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ABSTRACT

DYNAMIC LOT SIZING AND SCHEDULING IN A MULTI-ITEM
PRODUCTION SYSTEM

Padmanabhan Soundar
Old Dominion University, 1996
Director: Dr. Han P. Bao

In this research, algorithms are developed to address the problem of dynamic lot
sizing and scheduling in a single level (or single operation) production system. This
research deviates from previous research in this area in that it does not have the kind of
assumptions regarding the real world production system that normally were made to
reduce the complexity of the problem. Specifically, this research explicitly considers
finite capacity, multiple items, known deterministic dynamic demand, sequence
dependent setup times and setup costs, setup carryover and variable backlogging. The
objective is to simultaneously determine the lot size and the sequence of production runs
in each period to minimize the sum of setup, inventory, and backlogging costs.

The research here is motivated by observations of a real world production system
that has a highly automated operation with sequence dependent setup times. For
problems of this kind, optimal solution algorithms do not yet exist and, therefore,
heuristic solution algorithms are of interest. Two distinct approaches are proposed to
address the problem. The first is a greedy approach that eliminates setups while potential
savings are greater than the increase in inventory or backlogging costs incurred. The
second approach solves the much easier single item problem optimally for each item and
then adapts the solution to account for capacity constraints. An inteiligent modification

to the second approach is also tried where a “overload penalty” is used between
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successive runs of the single product optimization algorithms. A common component of
each approach is a dynamic programming algorithm implemented to determine the
optimal sequence of production within each period and across the scheduling horizon.
The addition of sequence dependent considerations introduces a traveling salesman type
problem to the lot sizing and sequencing decisions.

The algorithms have been tested over several combinations of demand and
inventory related cost factors. Specifically the following factors at two levels each have
been used: problem size, demand type, utilization, setup cost, backlogging cost, and
backlogging limit. The test results indicate that, while the performance of the proposed
algorithms appear to be affected by all the factors listed above, overall the regeneration
algorithm with "overload penalty" outperforms all of the other algorithms at all factor
level combinations.

In summary, the contribution of this research has been the development of three
new algorithms for dynamic lot sizing and scheduling of multiple items in a single level
production system. Through extensive statistical analysis, it has been shown that these
algorithms, in particular the regeneration algorithm with "overload penalty”, outperform
the conventional scheduling techniques such as no lot sizing and economic

manufacturing quantity.
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CHAPTER I

INTRODUCTION

This research deals with generation of production schedules that are used by
manufacturing personnel to control the flow of material through a production system.
Production schedules contain information on timing, sequencing, and sizing decisions for
production lots in a manufacturing environment. Specifically, this thesis applies
mathematical and operations research techniques to obtain good solutions to a particular
class of real world production scheduling problems called dynamic lot sizing and
scheduling problems.

Currently manufacturing resources planning (MRP II) is a very popular approach
used by manufacturing enterprises to perform their scheduling operations. However
when MRP 11 is used, it does not always give the best schedule. This is because it does
not take into consideration all the factors that influence the operations in the production
system. While consideration of more factors improves the quality of schedules
generated, it also increases the complexity of the scheduling problem. Scheduling
problems are differentiated from one another based on number of demand and
production factors that are included in problem formulation.

Scheduling task in a real world production system is a complex endeavor and has
been used as an important tool to control production costs. Potential benefits resulting

from good schedules have made production scheduling a hot topic for research in the

International Journal of Production Research is the journal model used in this
dissertation for references, figures and tables.
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area of production and operations management. The nature of scheduling problems and

the important role they play in controlling manufacturing costs is discussed next.

Background

For a manufacturing enterprise to succeed, it must keep production costs low and
also deliver its customer orders on time. Production costs can be classified into basic
production costs and inventory related production costs. Basic production costs include
material costs, labor costs, machine setup costs, and overhead costs. Inventory related
cost consists of inventory costs and backlogging cost. Inventory cost is the cost of
capital tied up in inventory. Backlogging cost is related to the ability of a production
system to meet customer due dates. Customer orders feature product requirements,
quantity, and due dates. Meeting customer requirements is the ability to deliver products
in the quantity ordered at the agreed upon time. When an organization cannot meet its
promised due dates, it backlogs the order (assuming the order is not lost). The costs
incurred when customer requirements are not met are not easily expressed in monetary
terms. They include loss of customer goodwill and loss of sales revenues resulting from
a shortage situation. One way of accounting for these intangibles is to levy a penaity,
called backlogging cost, when a promised due date is allowed to slip and order is
backlogged.

Basic production costs and ability to meet customer orders work as opposing
forces, i.e., as the flexibility of the system is increased to meet customer requirements

more setups are required, this causes an increase in the basic production costs and a
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decrease in inventory related production costs. Performing operations in a way that
minimizes production costs while meeting customer requirements is a non-trivial
endeavor. Scheduling is an important tool available to management to obtain an
optimum balance between trying to satisfy customer requirements and increasing
production costs. Schedules control setup costs, inventory costs and backlogging costs
incurred in a given situation. Since costs like material costs and labor costs are not
directly affected by schedules, given two schedules the better one is the one that results
in a fower sum of setup, inventory and backlogging costs.

In essence, the scheduling problem reduces to meeting several customer
requirements for muliiple products by the requested dates while keeping production
costs to a minimum. Inputs to the schedule consist of information on demands,
production rates, setup time and setup costs, and inventory and backlogging costs. The
schedule generates information regarding the timing, size, and sequences of production
lots. A real world batch production system where a non trivial scheduling problem exists

1s described next.

Motivating Case
This research follows observations made by the author at a batch production
facility. To protect the proprietary information of the company involved, only a general
overview of the production facility is described. However, sufficient detail is provided to
grasp the essence of the scheduling problem. The facility consists of two stages, the first

being a highly automated coating stage, and the second being a mostly manual packaging
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stage. The facility serves the needs of about forty customers who place orders for one of
the seventy or so finished products. There are about fifteen different coated products,
some packaged in several styles to obtain the greater number of finished products.

Figure 1 illustrates the structure of the products produced in this facility. All products

produced in the facility pass through the first stage before they get to stage 2.

Finished Products

O Packaging Materials

Coated Parts

Figure 1: Product Structure Produced in the Facility

Raw material is brought into the first stage on motorized pallets which can
accommodate various number of pieces based on the size of the product. A robot arm
picks up pieces from the pallet and dips them in a chemical bath. The size of the product
and the type of chemicals used determine the speed of the dipping process. Hence, the
production rate of the product being coated is a function of its size and chemical coating
applied. When production is switched from one product to another, one or more of the
following has to be changed:

1. pallet carrying the tubes,
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2. gripper of the robot arm used to dip the tubes, and/or
3. chemical solution in bath.

These changes result in significant setup times when production is switched from
one product to another. Since the changes involved are not always the same, the setup
time is dependent on the sequence of production. For example, switching between two
products of the same size but different chemicals in the bath would require time for just
changing the chemical in the bath. However, when switching between two products of
different sizes and bath chemicals the pallet, gripper, and chemical solution have to be
changed. Therefore, the second switch would take a longer duration.

Coated products are stored for up to five days, depending on product, before
they are moved to the packaging department. Packaging is a team based operation.
Packaging requirements, and thus team size, task assignment and production rate are
product dependent. Packaging personnel are assigned to teams at the beginning of each
shift. The composition and size of teams may vary between shifts, however they are not
changed during shifts. The setup required to start packaging is minimal and even this is
performed by a single lead operator before the start of each shift for all workstations.
Hence, the setup time required for packaging operations is not significant.

Proper coordination of schedules between the two stages is required to meet the
twin targets of reducing basic production costs and adequately satistying customer
requirements. However, the scheduling problem in the two stages are not of equal

importance. For the following reasons proper scheduling in stage | is more important

than scheduling in stage 2.
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1. Stage 1 adds more value to the product than stage 2 and hence must be more closely
monitored.

2. Stage 1 is the sole internal source of semi finished products in stage 2, hence it is
possible that stage 2 merely mimics the schedule in stage 1.

Stage 2 has greater flexibility, in that multiple products can be packaged

W

simultaneously and production rate can be controlled by changing the number of
teams allocated to a particular product. The rate of production is constant for a
given product in stage 1. This allows stage 2 to quickly adapt to changes in stage |.

4. Capacity available in stage 2 is greater than stage 1 and this absorbs inequalities in
rates of production between stages.

In the above described production system customer requirements are tracked and
schedules are generated using a MRP II system. The first stage is certainly the more
critical of the two stages and the MRP II system focuses on production in this stage to
determine the flow of products through the facility. The modus operandi of MRP 11

systems is discussed in the next section.

Production Control Using MRP 11
MRP II systems are basically an extension of the original material requirements
planning (MRP) systems that were first used in the fifties. In addition to MRP, modern
MRP II systems help the manufacturing enterprise integrate all of its manufacturing
support operations like accounting, quality control, sales, etc. For further description of

MRP II functionalities and methodologies readers are referred to Turbide (1995) and
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Wallace (1990) and references therein. MRP II is indispensable in a multi-stage

production environment where proper coordination of material flow between stages is

required. For this reason, they are used by a large number of manufacturing

organizations to perform this task. Salomon (1991) has identified two important types

of decisions that MRP II systems support:

1. Given the demand requirements in the final stage and the production information in
each stage, MRP II coordinates the production of each item at each stage.

2. Computation of lot sizes at each stage to meet demand requirements and minimize the
inventory and setup costs.

MRP 11 systems use a hierarchical two phase approach to the scheduling
problem. Initially, MRP II systems use economic manufacturing quantity (EMQ)
calculations to compute the size of the production runs. This is followed by sequencing
and timing decisions (the economic lot sizing problem) based on EMQ computations for
each product. EMQ calculations are based on the average demand rate per period,
production rate per period, setup cost, and inventory holding cost factor for each
product. EMQ computations determine the cycle time for each product, the production
time required and the cost of the schedule. Cycle time determines the lot size for the
product and is essentially the duration of demand that is satisfied by a single lot.
Elmaghraby (1978) presents a method to calculate the cycle time for each product. This
procedure is repeated below.

The average cost per unit time for each setup when product 1 is produced in

cycles of length 7; is given by the equation:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A hr(l- p )t
sc =2, it 2p,), )

dsC,

*
the value of 7; the optimal value of 7; can be obtained from the equation =0

which yields the minimum cost cycle given by

. [ 24 7
(1= pr) @

and a minimum cost of

SC; = \/214;-171'",' (1= pi) 3)

From equation (2), optimal lot size is obtained as Q,-* =T T,*, using these lot
sizes for each product a economic lot size problem (ELSP) is solved to determine the
sequence and the timing of production. EMQ calculations determine the lot sizes that
minimize the inventory related production costs represented in equation (1) and this
minimum cost value is given in equation (3). However, this method of calculating lot
size is based on several assumptions which are not true in the production system that
motivated this research. These assumptions oversimplify the problem by ignoring
important aspects of the production environment and demand environment. This raises
several issues when MRP II generated schedules are used in the motivating case. These

issues are addressed next.
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Shortcomings of Current Production Control System

Equation (1) which is minimized by the cycle time in equation (2) does not
account for two important aspects of the inventory related production cost that exists in
the motivating case:

1. sequence dependent nature of the setup costs, and
2. backlogging costs when customer due dates are missed.

Consideration of the first aspect would superimpose a traveling salesman type
problem on the EMQ calculations, this issue has been addressed by Taha (1975).
However, ignoring the customer due date requirements is a fundamental flaw of the
EMQ calculations. This limitation is imposed by equation (1) which artificially imposes a
static demand rate over a infinite horizon in what is essentially a dynamic demand
environment.

In the specific production system described above the customer orders and
forecasts are used to convert date specific orders to average monthly demand values.
MRP II then calculates the lot sizes of the products from these static demand values and
determines the timing of the production runs without regard to customer requested due
dates. The products are shipped to customers as they are produced and the dates
requested by customers are not adhered to.

In these cost calculations, backlogging cost aspects are ignored (customer due
dates are ignored) while calculating both lot sizes and timing of production runs. In this
particular facility, ignoring delivery dates requested by the customers has resulted in

perennial backlogging for some orders. Even worse the potential loss to the
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organization due to this loss of customer goodwill is not considered in scheduling
decisions. The reason being that coating schedule is based on static demand when the
actual demand is dynamic because MRP 1I systems based on EMQ cycle time
computations are incapable of handling dynamic demand.

MRPv IT systems in facilities that use them contain information that is required to
perform the scheduling operation. This fact and other beneficial features of MRP 11 can
be taken advantage of by developing algorithms to work in tandem with MRP II systems.
Therefore one popular alternative to address the shortcomings of MRP II systems has
been the addition of modules to tackle specific situations. Along this same line,
scheduling algorithms have to be incorporated for satisfactory application of MRP II
system in the case discussed here. The complexity of the scheduling problems (and
therefore complexity of the algorithms used to generate schedules) are influenced by a
number of attributes (factors) that exist in the production environment and the demand

environment where the schedule is to be applied.

Problem Attributes
The complexity of the scheduling problem increases as more attributes are taken
into consideration in the problem formulation. While simplifying assumptions can be
made to reduce problem complexity, ignoring one or more of these attributes affects the
quality of the solution when it is implemented in a real world production system. The
following attributes can be identified in the coating stage of the motivating case and must

be properly accounted for:
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Known deterministic dynamic demand. The customers place orders in known
discrete quantities that can vary with time. This can be linearly transformed into due
date in the first stage by subtracting number of days required for packaging and the
wait time between the stages.

Sequence Dependency. The sequencing of production is critical because setup costs
are a function of this sequence. Also sequence of production must be determined to
calculate feasibility of a schedule in terms of available capacity.

Setup Times: A known amount of time is used for setup when production is
switched from one product to another. During setup, the resource is not available
for production and there is a cost incurred for each setup. These durations are
typically expressed in hours.

Setup Carryover: When a product is coated continuously over a period of several
days setup is carried over from one day to the next, i.e. a separate setup is not
necessarily required for each day of production.

Capacity Constraints: Available capacity is finite, and this must be considered in
schedule development. When a generated schedule requires capacity in excess of
what is available then the schedule is infeasible. Capacity is expressed as number of
hours of production available in a day.

Multiple Items: Scheduling decisions must consider the fact that more than one
product is competing for limited resources. The algorithm must ensure that only one

product is scheduled on the machine at a given time.
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7. Backlogging Limit. An upper bound on maximum days allowed for backlogging of
orders. In general if customer orders are not met within a certain duration after the
due date these orders are lost, i.e. the customer is no longer interested in the order.
Therefore it is essential that customer orders are not backlogged for durations
greater than that stated in this attribute. A backlogging cost is assessed for each unit
of production backlogged for each day between the due date and maximum delay
allowed.

All of the above attributes are included in the formulation of the scheduling
problem addressed in this research. To facilitate the formulation of the problem and its

solution certain conventions are used, these are described next.

Conventions
Before the research problem can be presented conventions required to
understand the formulation are listed below.

1. Inventory costs, backlogging costs, and due date specifications are assessed at finite
intervals within the scheduling horizon. These intervals differ in magnitude from
setup time and capacity availability specifications. To capture this difference two
distinct time buckets are used to define the problem. Inventory and backlogging cost
computations, and due dates use large time buckets (also called periods). Setup
times, and capacity are expressed in small time buckets. For example large time

buckets can be days and small time buckets can be hours.
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2. Scheduling horizon is expressed as number of periods over which demand is to be

scheduled.

(F%)

Demand is expressed as hours of capacity required to meet the customer
requirements. This is achieved by dividing the actual demand units by production
rate. For example, if 800 units of a product is required and its coating rate is 400 per
hour, then this demand can be expressed as 2 hours.

4. Setup costs are calculated as linear multiples of setup times and a setup cost factor.
This factor can be the labor rate or any other value used to compute setup costs.

5. Inventory cost is calculated as the product of an holding cost and number of units of
a product (expressed in hours of demand) carried from one large time bucket to the
next. Similarly, backlogging cost is the product of a backlogging cost factor and
hours of demand backlogged. Typically, backlogging cost factor is greater than
holding cost.

6. The first product scheduled at the start of the scheduling horizon will require setup
based on the last product produced on the day before the scheduling horizon. In the
absence of this information the following convention is used. There exists a dummy
product which is processed before the start of the scheduling horizon and must be
reloaded at the end of the scheduling horizon. Without loss of generality, it is
assumed that this product is O (zero) and that s; = sp; = 0 = Sjo = Sui.

7. Ifidle periods exist in a given schedule then the current setup in the machine is not

tampered with during these times. To facilitate modeling a dummy product k is
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assumed to be produced during the idle periods in the system 3 s;; = s + sy and §;; =
Sik+ Sy V 1,j.

8. Demand information available has been modified to reflect the post coating waiting
time and packaging time. This allows production scheduled for day t to be used to
satisfy demand on day t.

With this information, the research problem can be formally stated as a

mathematical programming problem.

Statement of the Research Problem
The formulation of the research problem as a mixed integer non-linear
programming problem is described in this section. The objective is to determine the
production schedule that minimizes the sum of inventory costs, backlogging costs and

setup costs. Therefore, the objective function (TC) is

M]sz(l‘ithi +vieb; )+ ZZZS,]J’W + ZZZS// max( S, + A, —10)
it i jt iojot

4)
Basic production costs are invariant and hence are not included in the objective function.
A production schedule is determined to be optimal if equation (4) is optimal for a
feasible combination of x;, yij, Ax and By. The feasibility of these variables is determined
by their ability to satisfy the following constraints. The first set of constraints model
inventory, inventory balance, backlogging, and the relationship between the binary setup

variable and production scheduled:

u, =max(1;,,0) Vil (3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



v, =max(-1;,,0) Vit (6)
Ly + %y =1y =d, Vit (7)
‘
Iy2— Ddp Viiza (8)
k=t-a+l
Xy= M2y, +24,)<0 ¥V j1 (9)
i

Constraints stated in equations (5) and (6) determine whether a positive
inventory or a backlogged situation exists at the end of period t. This ensures that
proper cost multipliers are assigned to positive and negative inventories. Equation (7) is
a typical inventory balance equation. This equation states that the inventory difference
between the beginning and end of a period is the difference between the scheduled
production in that period and demand in that period. Constraint (8) states that
backlogging cannot extend beyond o days or, stated in another way, the amount of
production backlogged can at worst be equal to the sum of demand over the past & -1
days. Constraint (9) ensures that if a product is to be produced during a day then it is
either produced first in the day or it follows immediately after another product. The next

set of constraints handle sequencing issues and avoid more than one setup for a product

during a day:
ﬂir'*'zyj,‘[Sl Vil (10)
T
ﬂit+zyijtS] Vi (11)
J
2Ly - MA )0 Vi (12)
rJ
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ﬁ,-zzﬂlr?y,-jt Vit (14)
2By st Vi (15)
Z/?,-,Sl Vi (16)
ﬂ,-fZ(l—?/’g-,)Xﬂn_l Vit (17)

Constraints (10) and (11) avoid cycling of production (multiple lots of the same
product) within a period. Constraint (10) ensures that if a product is produced first on a
day then it is not sequenced after other products on that day. Similarly, (11) guarantees
that if a product is to be produced last in a day then it is not sequenced before other
products on that day. Constraints (12) and (13) make sure that on days in which more
than one product is produced the sequence is started and ended appropriately.
Constraint (12) states that there must exist at least one starting product if a sequence is
to exist on a day. Equation (12) along with (10) guarantees that the first product
sequenced on that day is at the head of the sequence. Constraint (13) makes sure that if
2 or more products are coated on a day then at least one of them is the last product.
Constraint (11) along with (13) ensure that the last product sequenced on a day 1s at the
bottom of the sequence.

Constraint (14) states that if only one product is produced on a day then the last
product is the same as the first product. Constraints (15) and (16) ensure that at most

one first and one last product are sequenced on a day. Constraint (17) handles situations
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when there is a whole day in which no production is scheduled, in which case, it ensures
that the last product produced is considered as the current product for proper accounting

of setup times. The penultimate set of constraints described below is capacity related:

w; =Cp — int - ZZSU-yU-, - ZZ(SU xmax( B+ Ay —1.0)) +
i i j i Jj

min( @;_y, ZZSI-/- xmax( P+ 4;-10)) Vi
ijo '

(18)
Constraint (18) imposes the capacity constraint on final schedule developed and
also determines the idle time for each period. Idle time is calculated as the initial
capacity from which is subtracted the total production scheduled and setup times
consumed. It also accounts for setup carryover and makes sure that any excess capacity
in the previous period is used for setup in the current period if so desired. Finally, we
are left with constraints that determine feasible ranges for the variables used in

formulating the problem and their initial conditions.

@, X Uy, v 20 Vit (19)
M-—>ow (20)
Bit: A Yy € {01} Vi, 21
Yy =0 Vit (22)
@, =0 (23)
Lion=1r=0 Vi (24)
Bio=0 Vi (25)
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Constraints (19), (20) and (21) define the ranges for the variables. Constraint
(22) precludes two successive spots in a sequence being taken by the same product.
Constraints (23) and (24) initialize the inventory levels and idle capacity at the extremes
of the production horizon. Finally, constraints (25) and (26) establish the assumption
that a dummy product (product 0) is produced at the beginning of the scheduling

horizon.

Objective of the Research

The objective of the research reported in this thesis is to formulate and make a
contribution to the solution of a difficult lot sizing problem that exists in the real world.
In this study, rigorous algorithms founded in mathematics and operations research are
developed to tackle a real world scheduling problem stated in the previous section.
Results obtained from this research are expected to lower the cost of schedules
generated in manufacturing enterprises when compared to the current MRP I developed
schedules. Although the research is motivated by an experience with a single case, this
type of scheduling problem is not uncommon in the manufacturing arena.

The problem as formulated in the previous section is a NP complete problem.
This is stated without proof since much simpler problems have been established to be NP
complete in the literature. Hence, optimal solutions to problems of the size that exist in
the real world cannot be determined with reasonable computational effort. For this

reason, this research focuses on obtaining good solutions to the class of problems
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addressed here rather than obtaining optimal solution. This research deviates from
previous research in the sense that it does not remove from consideration any of
attributes in the production system that increases the complexity of the problem. The
robustness of the algorithms developed here under various test conditions is studied.
From the results of this study it is possible to obtain insight into the behavior of critical

problem attributes.

Summary

In this chapter, an introduction was provided to the problem of dynamic lot sizing
and scheduling in a capacitated multi-item production environment. The role of
scheduling in controlling production costs was described. The motivating case was
introduced and the shortfalls of using MRP II generated schedules in such an
environment was discussed. The problem attributes that make scheduling in the
motivating case a difficult problem were addressed. A formulation of the scheduling
problem was discussed in detail and the objective of this research was stated.

The complexity of the simultaneously determining lot size, timing and sequence
of production is a very difficult yet, very relevant problem in production and operations
management. Several formulations of the problem have been addressed in the past.
Some researchers have attempted to solve problems with several machines in parallel in a
single stage and also multi-stage problems. However, most of these attempts involve

extensions of the single stage solution approaches. Besides, in a multi-stage system there
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usually exists a single stage that acts as a bottleneck to the system. In these situations,
schedules at the bottleneck controls the schedules adopted by other resources.

Hence, a vast majority of research efforts have focused on the single stage (level)
production system. While some have been solved successfully, optimal solutions tc a
vast majority of the problems have eluded researchers. Some of these formulations and

the approach used to solve the problems are discussed in the next chapter.
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CHAPTER I

LITERATURE REVIEW

In this chapter a comprehensive review of past research relevant to the current
research problem is presented. The aim is to draw implications from these published
results for the solution approach proposed to address the research problem. Research in
the area of lot sizing has been on going since before world war I. Hence, a complete
review of all literature in this area is beyond the scope of this work. Only the most
significant developments in this area and work that is directly relevant to the problem
addressed here are reviewed.

This chapter reviews previous research into different formulations and solution
approaches to the single level lot sizing problems. Single level manufacturing processes
are characterized by single level product structures, in which the product is converted
from raw materials to a finished product by one machine. The characteristics of the lot
sizing problem of the production facility in the motivating case are similar to single level
lot sizing problems. In such environments product demands are assessed from customer
orders and market forecast.

Past research in the area of single level lot sizing problems have been
characterized based on which of the problem attributes described in the previous chapter
have been accounted for. As more of those attributes are included in the problem
formulation tackled, both the problem and solution complexity increase. In this chapter
previous work is presented in order from the simpler problems to more difficult ones.

To facilitate the presentation of previous work, a classification and representation
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scheme is used. This scheme is adapted to include attributes that are taken into
consideration in the scheduling problem addressed here. A framework for classification

and representation of single level lot sizing problems is presented next.

Classification and Representation

To classify and represent research in single level lot sizing problems a 6 field
notation is used. This classification differs slightly from the one used by Salomon
(1991), in that he does not consider problems that allow for backlogging. Two fields
considered by Salomon, inventory cost structure and number of machines in parallel, are
dropped from the notation used here. Inventory cost structure is used to classify
inventory costs as either time dependent or time independent. All literature reviewed
here consider time independent inventory costs as this is also the inventory cost structure
of the problem addressed here. However, this does not preclude each product from
having different inventory cost factors in multi-item problems. Since only a one machine
single stage problem is considered here multi machine single stage problems are not
relevant to the problem addressed here. On the other hand, backlogging exists in the
motivating case and a field is added to classify research according to their backlogging
considerations.

The notation used is D/C/B/N/SC/ST. Each field in this notation and the range
of possible values is described below.
Type of Demand (D): This field can take two possible values c or d. ¢ means a constant

rate and d means deterministic and dynamic.
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Capacity Constraints (C): This field is 0 if the problem does not consider capacity
constraints, 1 if capacity constraints are considered.

Backlogging (B): This field can take on three possible values 0, i, v. If no backlogging
is allowed then this field takes on a value of 0. If backlogging is allowed and unlimited
then this field takes on a value of i for infinite, i.e. backlogging for up to the scheduling
horizon is allowed. If backlogging is allowed but limited then this field takes on a value
of v, which should be less than the scheduling horizon.

Number of Items (N): This number is equal to 1 if single item problem is considered,
otherwise N is the number of items greater than 1.

Setup Cost (SC): This field contains letters A, SD, SI, and TD respectively zero setup
costs, sequence dependent, sequence independent, and time dependent setup costs.
Setup Times (ST): If setup times are assumed to be zero then this field takes on a value
of A, for absent. If setup times are sequence dependent then this field takes a value of
SD. If sequence independent setup times are considered this field has a value of SI.
Time dependent setup times are represented using TD.

The classification and representation schema is robust and can be used to
represent scheduling problems spanning the entire spectrum from the easiest single item
problems to the complex problem addressed here. Most early scheduling problems
considered one item production systems, and analytical solutions to these problems were
easily developed. Several formulations of the one item problem were addressed. Some

of these are reviewed next.
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One Item Problems
The easiest class of lot sizing problems is the ¢/0/0/1/SI/A, i.e. single item
uncapacitated problem with no backlogging, sequence independent setup costs and no

setup time. A solution to this problem was first proposed by Harris (1913). For an item

. : . : . . /2 X I X A; .
i the optimal lot size for this problem is given by the equation ; = —————/'7 L This lot
j

size is called the economic order quantity (EOQ) and because of its simplicity is still used
in some circles.

d/0/0/1/TD/A is a similar problem to the previous one except that demand is
deterministic and changes from period to period. This problem is a slightly more difticult
problem than the uniform demand problem. It was first solved optimally by Wagner and

Whitin (1958). They proposed a dynamic programming algorithm that can solve

problems of any duration. The algorithm optimally determines the periods of zero

production and quantity of production in the non-zero periods. The authors used two
principles to reduce the solution space searched by their algorithm.

1. Optimal solution would not include a situation where inventory is brought into a
period and also non-zero production is scheduled in the period. Because, in the
absence of capacity constraints, cost could be reduced by simply adding the inventory
to the production in that period. For an arbitrary product i this can also be stated as

Tiixi = 0.
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2. For a schedule to be optimal, x;, =0 or Zd,-,' for some k, 1 <k <71 forVt
1'=t
and for an arbitrary product i. Any other value for x; implies that the first principle is
7(r+1n

violated. This limits the search space for the optimal solution to —

The two criteria outlined above are popularly referred to as the Wagner-Whitin
criteria and have been extensively used to improve the quality of solutions for more
complex scheduling problems. An alternate solution approach to the same problem was
presented by Silver and Meal (1969). Their procedure is founded on EOQ and provides
results comparable to Wagner and Whitin with a reduced computational requirements.

EMQ computations presented in chapter I is another class of single item
problems, these are represented by the notation ¢/1/0/1/SI/SI. This approach deviates
from EOQ in that it incorporates production rates as well as demand rates and was
reported initially by Koepke (1941).

The single item dynamic lot sizing problem with variable backlogging,
d/0/v/1/TD/A, was independently solved optimally in the mid 60’s by Zangwill (1966,
1969) and Manne and Veinott (1967). The work presented by these authors is reviewed
in detail in chapter III as it forms the basis for one of the approaches to solving the
research problem proposed here. A simple heuristic solution that is comparable in
solution quality to the more computationally intensive optimal algorithms above is
presented by Choo and Chan (1990). Their heuristic is based in a “eyeballing” technique

that tries to strike a balance between the inventory, backlogging and setup costs.
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In the presence of unlimited capacity single item problems can be successfully
applied to multi-item production systems. The unconstrained capacity availability
ensures that no conflict arises between schedules for any two or more products. The
biggest drawback of the single item problem is that it represents very few real life
production systems. On the other hand, the theory developed in solving these problems

can be extended and applied to more complicated problems.

Multi-Item Uniform Demand Problems

This class of problems is represented by the notation ¢/1/0/N/S1/S1, and are
popularly known as ELSP. When uniform demand exists and production is cyclical
EMQ offers the optimal lot size for a single item problem with uniform demand.
However, when this lot size is used in practice it is possible that the resulting schedule is
not feasible. Infeasibility arises when the sum of the production times for products is
greater than cycle time for one or more of the products in the system. Hsu (1983)
proves that determining the lot sizes that are optimal as well as feasible is an NP-hard
problem. There are two popular approaches to solving the ELSP problem. One is the
common cycle approach first proposed by Hanssmann (1962) and the other is the basic
period approach discussed by Bomberger (1963). The problem of determining the
feasibility of a given data set is addressed by Davis (1990) and the sequencing issues that
arise in ELSP solutions is addressed by Kim and Mabert (1995).

In the common cycle approach the cycle time is assumed to be equal for all

products. This cycle time is made long enough to accommodate the production of each
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item exactly once. The only remaining problem is to determine the optimal value of this
common cycle. However, the solution obtained by common cycle approach is not
optimal for the original problem. In the basic period approach each item can have
different cycle times, the only restriction being that the cycle time be a integer multiple of
a basic period. In this approach values of basic period and the integer multipliers of each
product have to be computed. Elmaghraby (1978) has reported that the basic period
approach offers better solutions than common cycle approaches.

ELSP is widely used in all MRP II software packages. If the demand pattern is
close to uniform then its use can be justified. However, in many situations ELSP
solutions are used even in the presence of dynamic demand. A case in point is the
production facility described in the motivating case. The aim of the current research is to
obtain lower cost schedules than that obtained using MRP II in the presence of dynamic
demand. However, the effort involved in generating a feasible ELSP schedule for a
given set of demand and production data is beyond the scope of this research. Hence,
for comparison purposes the lower bound of the ELSP schedule costs were used.

Elmaghraby (1978) and Davis (1990) have shown that the lower bound to the
cost of a schedule is obtained by producing in lot size of EMQ for each item. The cost
of the schedule can only increase by adjusting the lot size in an attempt to obtain
feasibility (either using common cycle or basic period). Since MRP I systems use ELSP
solutions it is more than fair that the schedule costs obtained using EMQ calculations are
used to represent the cost of MRP 11 schedules. This is specially significant because, if

the proposed methods produce lower cost schedules than one obtained using EMQ
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calculations it can be claimed that the proposed methods provide a better way to handle
the scheduling problem than MRP II. The cost calculations and sequencing issues are
addressed in detail in chapter I'V.

The biggest drawback of the ELSP formulation is that it assumes a uniform daily
demand rate. In batch manufacturing environment this assumption is rarely true. To
overcome this problem researchers included the actual demand patterns requested by
customers into the problem formulation. This category of research is reviewed in the

next section.

Multi-Item Dynamic Demand Problems

Dynamic demand problems are also referred to as finite scheduling problems.
These problems consider demand occurring over a finite scheduling horizon unlike the
uniform demand problems that consider a uniform daily demand occurring over a infinite
horizon. The original formulations of these problems are represented by the notation
d/1/0/N/ST/A. In a comprehensive review Salomon (1991) found that three types of
problems have been addressed in the literature.
1. Capacitated Lot Sizing Problem (CLSP): Here multiple items are produced in a
period but no setup is allowed to be carried over to the next period.
2. Continuous Setup Lot Sizing Problem (CSLP): This problem allows for setup to be
carried from one period to another but restricts production to one item per period.
3. Discrete Lot Sizing Problem (DLSP): This problem is similar to the CSLP problems

except that quantity produced in each period is either zero or equal to the tull capacity.
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Capacitated Lot Sizing Problem (CLSP)
This is by far the most common type of multi-item dynamic demand problem

addressed in the literature. Mathematically, CLSP is formulated as follows:

N T
MIN D 2 (Apwy + i) (27)
i=lr=1
subject to Ly +x,—dy =1, Vit (28)
N
Dx;<C Vi (29)
i=1
T
xip < (dy)wy, Vit (30)
k=t
x;, 1, 20 Vit (31)
w, €{0,1} Vit (32)

The objective function, expressed by equation (27), minimizes the sum of setup and
inventory costs across all products and all periods. Equation (28) is the same as
equation (7) and is the inventory balance equation. Equation (29) introduces capacity
constraints and equation (30) limits production in a period to only the future
requirements. Equations (31) and (32) place limits on the range of acceptable values for
the variables. Chen and Thizy (1987) have proven that CLSP is an NP-Hard problem
except when all setup costs are assumed to be zero. Two approaches have been used to
obtain good solutions to the problem. These are:

1. mathematical programming based approach, and

2. heuristic “common sense” approach.
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The problem reduces to a single item problem if capacity constraint expressed by
equation (29) can be relaxed. Elimination of this constraint allows the problem to be
solved as a series of inter linked single item problems. A Lagrangean relaxation based
approach is used by Thizy and Van Wassenhove (1985) to reduce the problem to a
transportation problem which can be solved optimally. However, in order to ensure the
feasibility of the final solution they use a sub-gradient optimization technique to calculate
the values of the Lagrangean multipliers. While their approach does not guarantee
optimality the primary contribution of their work is to suggest a method to obtain good
lower bounds to the original problem. A similar relaxation approach that relaxes the
demand constraints is presented by Chen and Thizy (1987). An approach that relaxes
the integer requirements of the solution is suggested by Maes and Van Wassenhove
(1986). The decimal solutions are rounded off using different techniques to attain
feasibility. Another approach based on column generation is discussed by Cattrysse et al.
(1990). Finally, a procedure that solves the problem for few products at a time is
presented by Kirca and Kokten (1994). Subsequent subsets are limited in capacity
availability and their inventory carrying capability, and this ensures feasibility of solution
over the entire set of products.

Most of “common sense” approaches involve the following features:

1. amethod to prioritize products,

o

a rule to allocate limited production capacity, and

a feasibility routine.

(8
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A forward pass algorithm is presented by Eisenhut (1975). Production lots for period |
are based on marginal cost coefficients, determined using equation (33) shown below.

{
A =Ty 2 (k= Ddy.

k=1 a2
U;(t) = (33

Equation (33) represents the rate of change in per period costs incurred by including
demand in period t into the current lot. At lower values of t large reductions in per
period costs can be expected however, as t increases the per period costs decrease at a
lesser rate and finally begin to increase. The lot sizes for period 1 are found by
increasing t one period for that product which shows the greatest potential savings for
each additional unit pulled into the current lot. This is repeated until capacity constraints
are violated or no additional cost savings are possible for any product. Then the time
axis is re-labeled so that the current period is period 1. The drawback of this approach is
that it may assign small lots for production in the earlier period and this leads to
infeasibility in the latter periods. A feasibility check provided by Dixon and Silver (1981)
for this approach is limited by the fact that it only specifies total production in each
period but does not determine the size of lots for individual products for feasibility.

A forward pass algorithm with a backtrack routine for feasibility is discussed by
Lambrecht and Venderveken (1979). They use a different equation for calculating the
marginal cost coefficients which is represented by the equation shown below

~1
Ay Dk =Dy = by x (1= 1) xd,

k=1 .
. = 34
v (1 =) xdj B9
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Equation (34) is obtained by comparing the marginal cost of including demand in period
t into current production to the cost of including demand in period (t-1). A positive
value of U(t) indicates that inventory related costs can be reduced by including demand
in period t into current production. If at any point in their forward sweep they find that
capacity is not sufficient to meet remaining demand they go back to previous periods and
increase production lot assignments of earlier periods.

An alternative approach to ensure feasibility is presented by Dixon and Silver
(1981). They perform a look ahead computation for cumulative production
requirements up to period t (for all t) so that no infeasibility will arise in period t+1.
That is, the production in period t must exceed the total amount demand exceeds
capacity in all future periods. Their completely unidirectional approach sometimes
requires inclusion of production lots that have negative marginal savings coefficients.

Production in the later periods can be straitjacketed by the commitments in earlier
periods in the above approaches. To avoid this, an approach that first considers the
periods that provide maximum savings is proposed by Dogramaci et al. (1981). Initially
the lot sizes are assumed to be equal to demand in that period. This is followed by
shifting of production first to reduce costs and then to achieve feasibility. The algorithm
is a four step algorithm that will find a feasible solution if one exists.

Comparison of the performance of these heuristics is studied by Maes and Van
Wassenhove (1986). The results indicate that the Dogramaci heuristic outperforms the
others when tight capacity constraints exist, i.e., capacity utilization of resource is high.

When a definite trend in demand can be established then the look ahead approach of
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Dixon and Silver out performs the other two. Time variability and lumpiness was found

to have little effect on the performance of these heuristics.

Continuous Setup Lot Sizing Problem (CSLP)

Mathematically the CSLP is formulated using the mixed integer program

approach:
N T
MIN Y. Z(A, x max(0, w;, —wj_)+ Ml (35)
i=t=1
subject to Loy +x;, —dy, =1 Vit (36)
N
2xi <G Vit (37)
i=1
7
xi < (2di )y Vi (38)
k=t
N
dwpsl Vi (39)
i=1
X, 1; 20 Vit (40)
w;, € {0, 1} Vi1 (41)

The objective function in equation (35) reflects the potential cost savings due to
setup carryover. This formulation states that when the same product i is produced in
period t-1 and t (w; = 1 and w;.; = 1) then there is no setup cost incurred for production
in period t. Equations (36), (37) and (38) are the by now familiar inventory balance,
capacity constraint, and lot size limitation equations respectively. Equation (39) limits

production to a single item in a period. Equations (40) and (41) control the possible
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range of values for the variables. CSLP has been proved to be an NP-Hard problem by
Florian et al. (1980). However, fairly large problems have been solved with reasonable
computational effort. This indicates that CSLP is more tractable than CLSP and hence
no heuristic approaches are required to solve the standard CSLP problem. The optimal

solution is obtained by a heuristic based approach upon on the relaxation of the capacity

constraints and is reported by Karmarkar and Schrage (1985).

Discrete Lot Sizing and Scheduling Problem (DLSP)
The only difference between the DLSP problem and CSLP problem is that, in
DLSP the quantity produced in each period is either assumed to be zero or equal to the

full production capacity.

N T
M]NZZ(Ai x max(0, w;, —w;_1)+ "l (42)
i=li=1
subject to Ly + piwy, —dy = I, Vit (43)
N
Z“’it <1 Y1 (44)
i=1
I, 20 Vil (45)
w;, € {0, 1} Vi, (46)

The objective function (42) is the same as the one used in CSLP formulation. The
inventory balance equation (43) is modified to reflect the new restriction on the size of
production lots in a period. Equations (44), (45) and (46) are same as (39), (40) and
(41). The DLSP formulation does not use the x; decision variable because it considers

only all or nothing situations. Fleischmann (1990) presents a branch-and-bound
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procedure using Lagrangean relaxation for determining the lower bounds and feasible
solutions to a given problem.

The original formulations for multi-item lot sizing under dynamic demand were
reviewed in this section. Most of the researchers have focused their attention on the
CLSP formulation. This is because a vast majority of real world dynamic lot sizing and
scheduling environments reflect the attributes included in this model. To improve the
applicability of these solution procedures several extensions have been proposed, and

they will be reviewed in the next section.

Extensions of Original Formulations of Multi-Item Dynamic Demand Problems
A combination of CLSP and CSLP problem formulations with setup times,

/d/1/0//N/A/S], is considered by Aras and Swanson (1982). Depending on the sequence
of production, if a product is produced in an adjacent period, then it is possible to avoid
setups and thereby not lose capacity. The authors propose a “common sense” practical
approach to solve the problem. The biggest drawback of this formulation is that it does
not consider setup costs and only the cost of inventory is reduced and also sequencing is
limited to first and last products in a period. A similar formulation which includes setup
costs has been solved for small problems Gopalakrishnan et al. (1995). These authors
formulate the problem as a mixed integer linear program (MILP), and solve a problem
with five products over 12 periods optimally. The applicability of their approach to

much larger problems was not discussed.
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The CLSP formulation has been extended to include setup times, d/1/0/N/S1/SI,
by Trigeiro et al. (1989) and Trigeiro (1989). Consideration of setup times increases the
complexity of the problem, for example determining if a given data set has a feasible
solution is NP complete. Trigeiro (1989) has proposed an approach similar to the one
used Lambrecht and Vanderveken (1979) with setup time considerations. Then a multi-
pass algorithm is used to shift production for cost reductions and to attain feasibility.
Trigeiro et al. (1989) propose a mathematical approach that uses Lagrange multipliers to
calculate the lower bound, in the second stage of the algorithm a feasibility routine is
implemented. Work done by Trigeiro (1989) and Trigeiro et al. (1989) show that
solution approaches that were developed for zero setup time environment can be
successfully modified and used in the presence setup times.

A mathematical approach to solving the DLSP problem with setup times is
discussed by Cattrysse et al. (1993). Here the DLSP is formulated as a set partitioning
problem and a dual ascent column generation heuristic is used to solve the problem. The
heuristic generates both lower and upper bounds for the problems which allows for the
measurement of solution quality.

The DLSP problem with sequence dependent setup costs, d/1/0/N/SD/A is
studied in Fleischmann (1994). Here, the authors use a traveling salesman formulation of
the problem with time windows to determine the lower bounds to the problem. An
alternative approach to solve the problem involves the use of various estimating methods
to convert the sequence dependent setup costs to sequence independent costs. Six such

approaches are tested by Dilts and Ramsing (1989) across a spectrum of problem
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parameters. The authors found that simple rules to estimate the setup costs are superior
to the more complex rules.

This completes the review of literature. The results obtained by previous
researchers has a direct bearing on the solution approach proposed for this study. A
summary of literature review and implications of this review on the current research are

discussed in the following section.

Summary

From the above discussion it can be said that significant advances have been
made in accurately solving the simpler problems. However, approaches to obtain good
solutions to more complicated problems have not been widely studied. Specitically, none
of the researchers have considered all the problem attributes presented in chapter I
simultaneously. The assumptions made in the past while proposing solution methods to
problems were not always realistic and this hinders the widespread use of finite
scheduling methods in the real world. On the other hand this research is focused on a
very significant scheduling problem in the real world. Substantial differences exist
between the scheduling problem addressed here and those proposed and studied in the
past. However, the theory that has been developed by previous researchers can be used
to solve the current problem.

The current problem is basically an extension of a combination of the original
CLSP and CSLP problem formulations, and can be represented by the notation

d/1/v/N/SD/SD with setup carryover. The formulation that comes closest to the one
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researched here was presented by Gopalakrishnan et al. (1995). However, there are key
differences between their formulation and the one addressed here.
1. Variable backlogging is allowed in our formulation, no backlogging is allowed in

their formulation.

o

Sequence dependent setup costs and setup times are incorporated here. Only

sequence independent setup cost and times are used in their formulation.

W

Their solution procedure restricts the size of the problem that can be addressed.
however, even large problems can be solved using the approach presented here.
Although a more difficult problem is addressed here the method proposed here
takes advantage of several theoretical foundations laid by previous researchers. The
contributions most relevant to the problem addressed here are:
1. research that deals with complexity of different types of dynamic demand problems,
2. optimal solution to the single item dynamic demand problem with backlogging, and
3. solution approaches to the traveling salesman problem to sequence the production.
While the first two contributions are in the area of finite scheduling the third
topic is a difficult open problem in the realm of operations research. Contributions of the
first category are important because they provide the basis for showing that the problem
addressed here is a difficult problem, and justify the use of heuristics to solve this
problem is justified. The second and third categories are important because the
algorithms developed to solve the research problem are based on these concepts. Hence,

in the next chapter the computational complexity of the research problem is discussed
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followed by a review of theory behind essential concepts that form the crux of the

algorithms developed to solve the problem.
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CHAPTER 111

THEORETICAL FOUNDATION

The primary aim of this chapter is to discuss the implications of theoretical
concepts developed by previous researchers on the solution approach proposed here.
Before a solution approach can be proposed for the research problem it is essential that
the computational complexity of the problem be addressed. If it can be shown that the
problem addressed here belongs to a class of NP-Complete problems then this justifies
the use of heuristics to solve the problem. In the first part of this chapter, it will be
shown that the research problem addressed here justifiably belongs to the class of NP-
Complete problems. This justifies the use of heuristic algorithms to solve the problem.
The algorithms proposed for the solution of the research problem are theoretically
grounded on certain principles developed by previous research in the area of lot sizing in
dynamic demand environments and other related operations research problems. These
principles include the optimal solution to the single item problem with backlogging

(d/0/v/1/TD/A) and a heuristic solution to the traveling salesman problem.

Computational Complexity of Research Problem
The computational complexity of a combinatorial problem is related to the
computational behavior of most efficient algorithms designed to obtain its optimal
solution. This behavior is measured by the running time of the algorithm i.e., that is the
number of elementary operations such as additions and comparisons required to solve

the problem. This running time is related to the size of the problem addressed i.e., the
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number of bytes occupied by the input data. If a problem of size n can be can be solved
by an algorithm that is polynomial function of n (example: n, n%, n’,.. ) then the problem
can be considered to be well solved. Polynomial algorithms have been developed for a
few types of combinatorial optimization problems (Lawler 1976). However, a vast
majority of such problems can only be solved by enumerative methods which may require
exponential time.

A problem is said to be NP-Complete if it can be proved that no polynomial
solution exists for the problem. However, such a proof will not be attempted here.
Instead, it is conjectured that the research problem is NP-Complete based on proven
results published by others. It has been well established that the single item CLSP is a
NP-Complete problem by Florian et al. (1980). This result has been extended to cover
multi-item CLSP (Chen and Thizy 1987) and CSLP (Florian et al. 1980). The research
problem can be reduced to a combination of CLSP and CSLP problems if no
backlogging is assumed (c. = 0). This means that the reduced problem is at least as hard
as CLSP or CSLP. The solution space for the problem is only increased by
consideration of backlogging, which does not make the problem any easier. Hence, it
can be stated with reasonable certainty that the problem addressed here is NP-Complete
and that no polynomial time algorithms exist to determine the optimal solution to the

problem.
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Single Item Problem with Backlogging
Optimal solutions to this problem was developed in the mid 60’s by Zangwill
(1966, 1969) and Manne and Veinott (1967). For an arbitrary product i the problem that

they addressed can be formulated by the following equations:

T
MIN D (Aw;y + bty +biviy) (47)
t=1
subject to u, = max(/;,0) V¢ (48)
v, =max(-1;,0) V1 (49)
Lyy +xy — Iy =djy Vi (30)
t
Ly2- 2dpy Yiza (51)
k=t—a+1
X =M@, )0 Yt (52)
lio=1i=0 (53)
wy, € {01} Vi (55)

The objective function (47) minimizes the sum of setup, inventory and
backlogging costs. Equations (48) and (49) ensure that appropriate cost multipliers are
used in the objective function. Equation (50) is the familiar inventory balance equation.
Equation (51), similar to equation (8), constrains the maximum backlogging allowed.
Equation (52) makes certain that a setup cost is assessed every time a production lot is
scheduled. Significant differences between this formulation that studied in this research

are listed below:
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1. Single item vs. multi-item.

2. Unconstrained capacity availability vs. finite capacity availability.

[V}

No setup time vs. significant sequence dependent setup times.

4. No setup carryover vs. setup carryover allowed.

5. Pre-defined setup costs (may be time variant) vs. sequence dependent setup costs.

The scheduling problem with additional attributes considered in this research can be

solved by superimposing the additional attributes on the optimal solution algorithm to

the formulation presented above. The authors propose a dynamic program based
solution procedure to optimally solve the above formulation. To reduce the solution
space that must be searched for the optimal solution, a theorem called the regeneration
poiﬂt theorem is used.

For an arbitrary product i, a period t is called a point of regeneration if inventory
at the end of the period is zero (Iy = 0). A schedule is said to have a regeneration point
property if;

1. Between any two periods in which production occurs, there exists one and only one
regeneration point. This can be formally stated using mathematical terms, for an
arbitrary product i; given t<k and x;, > 0; x;,4) = Xj;30 =. . .= Xjp—| = 0, and x;. >0
there exists a period t*, i < ¢ *< k — | which is a regeneration point,

2. Between any two regeneration points there exists only one period with production

greater than 0. Formally for an arbitrary product i, given t <k and Ij = I; = O there

exists a period t', 7 <7'< k such that
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k
de, lft”=t'
Xjpm = k'=t+1 (56)

0 otherwise

Equation (56) states that all demand between periods t and k is met by
production in period t' and that all other periods in that durations have no production.
The importance of the regeneration point property lies in the usefulness of the
regeneration point theorem which states that “There is an optimal schedule which has the
regeneration point property”. Proof of this theorem is available in the original papers.
The dynamic programming algorithm proposed by the authors works as follows:
Step 1. Calculate c,’,;C the cost of producing a lot in period t' to meet all demand between

the regeneration points of t and k

k -1
cho= A+l 2" -1+ D (-1, Yk (57)
t"=1'+] t"=1+1

Equation (57) states that the cost of producing a lot in period t' to meet demand for
periods (t+1) to k is the sum (1) of setup cost in that period for that product, (2) the
inventory cost for producing demand for periods (t'+1) to k in period t' and (3) the cost
of backlogging demand in periods (t+1) to (t-1).

Step 2. Calculate ¢, = min ¢l and save the value of t' that provides the lowest cost.
r+1<r'sk

In this step, the best period to produce in order to meet demand between periods (t+1, k)
is identified and the cost of the having regeneration points in periods t and k is

computed.
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Step 3. Determine the next regeneration point that minimizes the cost of going from the
current regeneration point to regeneration point T. For this the cost of all possible cost
combinations from the current regeneration point to T are computed and compared.

Formally stated:

I = rr;{in eg+fr) te(O,T-Dand fy=0 (58)
1<

<T
For each regeneration point t equation (58) determines the next regeneration point (k)
that minimizes the inventory related production costs. The duration between two
successive regeneration points determines the size of the production lot that is produced
between the points, and is equal to the total demand in that duration.
Step 4. Forward pass to determine optimal production lots. Given a regeneration point
in period O then the next best regeneration point can be identified using step 3.
Subsequently regeneration points can now be determined by values saved from step 3.
This is repeated until the regeneration point in T is reached.

The four step algorithm described above determines the best periods of
production to meet a known deterministic dynamic demand in the presence of
backlogging. This algorithm is at the crux of some of the methods proposed in chapter
IV to solve the research problem addressed here. While the above algorithm can be used
to determine the size of the production lots, it is also essential to determine the sequence
of production. In this regard, the traveling salesman problem addressed in the next

section plays a crucial role.
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Traveling Salesman Problem (TSP)

TSP is a network problem to determine the least cost sequence of nodes to visit
so that each node in the network is visited exactly once and the trip ends in the starting
node. The TSP formulation is widely applied in the real world to determine the sequence
of travel between cities for people and places. In this context, the cost to be minimized
is the travel cost between cities. In this study, TSP formulation is used to minimize the
sum setup costs across the horizon incurred when switching production between
products. TSP is a NP-Hard problem. However there are several algorithms that take
advantage of the nature of the cost matrix to determine optimal solutions to fairly large
problems within reasonable computational effort. Two classes of heuristics have been
proposed in the literature to solve the TSP problem (Mathur and Solow 1994):

1. Tour construction heuristics: build a tour (sequence) by including sequentially one
node at a time until all nodes are used.
2. Tour improvement heuristics: start with a given tour and attempt to construct better
tours with progressively less total cost.
A sequence construction heuristic, also called the cheapest-insertion algorithm, (Mathur
and Solow 1994) is used in this research and detailed below. The basic idea is to start
with a sequence of products and sequentially create larger sequences by:
1. selecting a product to be included into the sequence, and
2. determining where to insert the selected product.
For every product that is not yet included in the sequence the algorithm

calculates the best point of insertion for that product. The product that provides the
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least additional increase in the setup cost of the sequence is selected for insertion at its
lowest cost insertion point. The TSP sequencing heuristic is listed below.
Initialize the TSP sequence:

¢1 = i, d)z =j 3S’J + Sjl = M]N (Si'i" + S]'",")

i'i'ew
k=2

y = all products but i and j

while (y = ©)

{
Ore1 = 1 o2
Om=]j 2 S¢m—1j + Sj¢'” - ?:1;: /Erg,i/;(?-i-l(S@—li + 5i¢/ ) (60)
k++

remove j from

Once the two initial products have been identified there exists two possible
insertion points. The third product can either be inserted between ¢, and ¢, or between
¢2 and ¢;. Similarly, in subsequent insertion point considerations insertions between the
last product and first product must be considered. To accommodate this possibility
equation (59) creates a dummy position at (k+1) and sets the product at this position
equal to one in position 1. Equation (60) identifies both the best product, that has not
been inserted into the cycle yet, and the point of insertion of the product. For each item,

it calculates the cost of the sub-sequence consisting of its two adjacent nodes and thus
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identifies the best insertion point for the product if it offers the lowest insertion cost
amongst all products.

Once the node with the lowest insertion cost is identified then the tour is updated
to reflect this new insertion. The tour is updated by merely incrementing the positional
value of the nodes after the new insertion points by one. If the insertion point is between
k and (k+1) then the new insertion point is reset to 1. The length of the tour is
incremented and the selected product removed from the list of un-inserted nodes. The
above procedure is repeated until all products are inserted into the sequence. While, this
algorithm does not determine the optimal sequence of production, it provides a good
approximation to the optimal solution. The context in which the sequencing issue arises

in solving the research problem justifies the use of a heuristic.

Summary

In this chapter, three theoretical concepts that play a large part in the functioning
final algorithms have been presented. The complexity of the research problem was
compared with other lot sizing problems addressed previously. A dynamic programming
approach to optimally solve the single item problem with backlogging was described.
Finally a TSP heuristic that plays a large role in sequencing production is detailed.

Research methodology consists of determining the heuristic algorithms that can
be used to solve the formulated problem. These heuristic algorithms used to generate
schedules for research problem must address the issues of lot sizing and sequencing. No

solution procedure has been developed yet to determine lot sizes in the presence of
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capacity constraints. However, the regeneration theorem can be used to optimally
determine lot sizes in the absence of capacity constraints. Therefore, the regeneration
theorem is incorporated into the heuristics proposed here. The cost of the final schedule
is dependent on the sequence of production (due to sequence dependent setup
considerations). The TSP algorithm described in this chapter is used to determine the
sequence of production of production lots.

Thus far a foundation has been laid to detail the methodology used to
successfully address the research problem.  The primary purpose of research
methodology is to unequivocally layout the sequence of steps that has been used to solve
the research problem. Research methodology developed to solve the research problem is

complicated and unique. Chapter IV deals with the details of this methodology.
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CHAPTER IV
RESEARCH METHODOLOGY

The research problem addressed here is NP-Complete, which precludes the use
of exact approaches to solve problems of the size that exist in the real world. It is for
this purpose heuristic approaches are proposed to address the problem. The aim of each
heuristic approach is to determine the production lots and sequence of production for
each item in each period that minimize the sum of inventory, backlogging and setup
costs. For a solution to be accepted, it must be feasible. For a schedule to be feasible, it
must satisfy the following two constraints:

1. capacity requirements in each period must be less than or equal to capacity available
in each period, i.e., equation (18) of chapter I must be satisfied, and

2. the maximum delay criteria must be satisfied, this ensures that orders are not
backlogged more than o days as represented in equation (8) of chapter L.

The original problem formulation has too many variables and constraints to be
effectively considered in tandem. To facilitate solving the problem, the strategy adopted
here is to fragment the original problem, solve the individual parts, and then combine the
parts to obtain a solution to the original formulation. Any solution approach to the
research problem must address three issues:

1. determine the size of production lots for each product in each period,
2. sequence the production lots within each period and across the schedule horizon, and

convert an infeasible schedule to a feasible schedule without unduly affecting the

(93}

schedule costs.
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Each of the above is a substantial problem on its own merits. However, the
situation is further complicated by the inter-relationships between the problems. These
are not three separate problems; on the contrary, they are intertwined because:

1. the feasibility of a schedule is linked to the size of the production lot for each item in
each period and the setup time required for each item (this is dependent on the
sequence of production),

2. the determination of lot sizes depends on capacity considerations (a feasibility
requirement), and since setup times are sequence dependent, capacity requirements
cannot be accurately determined until the sequencing issue is resolved, and

3. sequencing is a function of non zero production lots scheduled in each period which
in turn depends on the capacity availability in each period.

Hence, any approach to solving the research problem must iteratively solve the
lot sizing problem, the sequencing problem and also address the feasibility issue. In the
past, when a new formulation of a dynamic demand lot sizing problem had been
addressed two broad ways have been proposed to handle the problem:

1. develop a “common sense” approach to solve the problem, and

2. use optimal solutions to sub-problems and adapt these solutions to obtain feasible
solutions to the current problem.

In this research, one extension of the first approach and two variations of the
second approach have been developed resulting in a total of three new algorithms. The
three algorithms essentially differ in their approach to addressing the lot sizing issue. The

initial lot sizing problem is handled in one of the following ways.
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1. The “common sense” approach is a lot shifting procedure similar to one used by
Dogramaci et al. (1981).

2. The first variation of optimal solutions for sub-problems uses the regeneration
theorem to solve the single item lot sizing problem with backlogging optimally for
each item.

The second variation, of optimal solutions for sub-problems, solves the single item

(93}

lot sizing problem with backlogging for each item with a “overload penalty” between
successive items to reduce infeasibility of the final solution. This is a more intelligent
application of this approach than algorithm 2.

The three algorithms differ primarily in the way in which they approach the initial
lot sizing problem. Other parts of the algorithms are similar in the three cases, and for
this reason the overlapping features of the algorithms will be addressed first. The
overlapping features are; sequencing method, capacity requirement calculations,
procedure to eliminate infeasibility, and a optimality condition test. The solution to the
sequencing problem is founded upon the TSP heuristic discussed in the previous chapter.
The details of the sequencing problem and the solution to the problem are described in

the next section.

The Sequencing Problem
The sequencing problem consists of determining the optimal sequence for
production of lots within each period and across the scheduling horizon. A dynamic

programming methodology adopted to solve the sequencing problem is detailed here. A
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dynamic program is defined by stages, states and policy costs. The cost of a sequence is
only dependent on sequence dependent setup costs, and not inventory/backlogging costs.
In this case, each day is a stage, and states within a stage are uniquely defined by the first
and last products produced on that day. For example, if there are n products scheduled
on a day then there are SP possible states in that stage. While the 2 products produced
first and last identify the state there are, (n-2) other products that have to be
incorporated into the state between the first and last products. Each item incurs a setup
cost based on the sequence of production. The policy cost for a state is the minimum
cumulative setup cost associated with the state. Furthermore, this cost depends on the
sequence of production of the (n-2) products between the first product and last product.

For example, if items a, b, ¢ and d have non zero lots scheduled in a day. Then,

there are 5} P =12 possible states in that stage. Representing each state by the pair of
first and last items produced in the stage we get twelve pairs as follows; { (a,b), (a,c),
(a,d), (b,a), (b,c), (b,d), (c,a), (c,b), (c,d), (d,a), (d,b), (d,c) }. For the state represented
by the pair (a,b), two possible sequences are possible (1) a—>c—d—b and (2)
a—>d—c—b. The cost of sequence 1 is S,. + Sca + Sg» and the cost of sequence 2 is S.a +
Sdc + Seb. The cost of the state (a,b) is the one that gives the lowest cost of all possible
sequences. Hence, for each state in each stage the best sequence between the first and
last items must be solved to determine the cost of the state.

This problem is similar to a TSP introduced in chapter 111, except that we have
our starting and ending nodes pre-defined. A TSP like problem addressed here is called

the pseudo TSP. Pseudo TSP, like the original problem, is a NP complete problem
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(Lawler et al. 1985) and optimal solution is difficult to calculate when the number of

products becomes large. Typically, very few products are scheduled for production in a

day. In such instances, the pseudo TSP can be solved by complete enumeration. n!

possible solutions must be compared if complete enumeration is used. However, asn

becomes large, n! becomes untractable and a heuristic procedure is used to solve the

problem. In this research, the sequencing issues within each state are addressed as

follows:

1. when the number of products scheduled for a day is < 7, the TSP problem is solved
optimally using complete enumeration, and

2. when the number of products scheduled for a day is > 7, the TSP problem is solved
using a tour construction heuristic described in chapter III.

To solve a TSP problem of size n by complete enumeration the cost of all n!
possible combinations must be computed and compared. Thus, when 7 products are
scheduled in a day the size of the TSP problem is 5, since the first and last products are
already defined. This calls for 5! = 120 sequences to be compared and selection of the
lowest sequence amongst all possibilities.

The use of a heuristic for larger problems is justified because, in a real life batch
production environment, seldom does one encounter more than 7 products scheduled for
production in a day. This is true even if the total number of products in the system is
much greater than 7. However, sequencing greater number of products may be required
in the early stages of problem solving. It is for this purpose that the heuristic approach is

mostly used. The sequencing algorithm detailed below is a two phase algorithm. In the
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first phase the cost of all possible states are calculated by solving a pseudo TSP. The
second phase invokes a dynamic programming algorithm to calculate the lowest cost

sequence across the scheduling horizon.

Phase 1: Cost of States

A state is defined by the first and last products sequenced in a period. These two
products are passed to this phase of the algorithm by the dynamic programming
procedure described in phase 2. Now the pseudo TSP is reduced to determining oy, for k

=2,..., N given oy and Ot The TSP solution procedure used is based on the value of

n.. One of the following procedures is used to determine the sequence and cost of the
sequence.
1. Ifn e [0, 1]1 then Crgp =0

2. Ifny=2then Crsp =S

o1 %2
3. Ifn,>2 and n, <8 then Cpgp = min(®,) wherek=1,2,. .., n, i3
k

1y

Op=2.5 4
i=2

i e where 171,-1" is the ith product on the kth tour, also llllk =0, and
1M
1=

m,l;’[ =0y, Vk t. All possible values of m,-k are pre-computed. The complete
enumeration routine determines all possible sequences of production. The procedure
then compares the cost of each of these sequences with others to find a minimum

cost sequence.

" if n,= 0 then dummy product = o) = One (indicating a idle period)

ifn,= 1 then 0y = 0, =13 x; >0
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4. If n, > 8 then a modified tour construction heuristic similar to the one described in
chapter 3 is used. Certain modifications are required to accommodate the fact that

the initial and the final nodes are pre-determined. The basic idea however remains

the same.
Initialize: 1=2; ¢ = o, ; ¢2 = Ony (61)
while (y = &)
{
dn=] 2 S¢m—1] + Sj¢m = I(Zi;zlgglgl(Sm_l, + Si¢/; ) (62)
1++
remove j from
}

Equation (61) initializes the starting point and ending point of the sequence to the
pair products that define the first and last products in period t. Equation (62) inserts a
product j at position m such that this insertior} causes the lowest possible increase in the
sequence. This equation differs from equation (60) in that it does not allow insertion of
products after the last product in the period. The procedure is repeated until all products
have been positioned. The cost of the sequence is obtained using the equation (63)

shown below.

n,

Crsp = I‘E S¢k—1¢k (63)
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Phase 2: Dynamic Programming Algorithm

This phase of the sequencing algorithm incorporates the TSP procedure
described above into a much broader dynamic programming algorithm. In this
algorithm, the states within each period that provide the optimal sequence for the entire

scheduling horizon are identified.

Initialize: nroy =1, np =1, PCh, =0, foy =0, Iph =0, Op, =1
for(t=Ttot=0)

{

k k ; m k :
or 3PC/ = min  PC/+S, & +C Ykelld 64)
Y R 7 S .01/«

The initializations provide transition between the current scheduling horizon and
adjacent horizons and also add completeness to dynamic programming algorithm at its
boundaries. Equation (64) identifies, for each state k in the current stage t, the state in
the next stage that gives the lowest cost sequence between the current stage and T. For
example, if this state is m then m is the state that minimizes the sum of:

1. the lowest cost of getting from that state m in stage (t+1) to T,

2

the setup cost to switch production between the last product that detines state k and
the first product that defines the state m in stage (t+1), and
3. cost of the sequence returned by the pseudo TSP algorithm between the items that
define the first and last products of the sequence.

By progressing from the last stage to the first stage the algorithm successively

finds the lowest cost between all the intermediate states and the final stage. Once the
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best state in the next stage has been identified, for each state, the problem now reduces
to one of retrieving the best sequence. This is achieved as follows.
for(t=1tot<=T)

{

k<« ok, (65)

k.
opn=G; Vj (66)

In equation (65) the state k in period 1 that gives the lowest cost sequence
between periods 1 and T is identified. Equation (66) then saves the sequence of items
that defines state k. The algorithm successively identifies the best sequence in the next
stage until stage T is reached. This algorithm is versatile in that it even accommodates
intermediate periods during which no production lots are scheduled, using one of the
conventions stated in chapter .

The most important aim of the sequencing algorithm is to reduce the setup cost
component of the inventory related production costs. Also, accurate sequencing is
required to exactly calculate the capacity requirements for each day. Calculation of these

capacity requirements once a sequence has been identified is detailed in the next section.

Calculating Capacity Requirements
With information available on production lot sizes for each product in each day
and the best possible way to sequence the production, both across the horizon and within

each day the capacity requirements to meet the schedule can be determined. If the
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capacity required is greater than capacity available then this indicates that the schedule is
infeasible and modifications are required to make it feasible. The method used to
calculate slack capacity and overloading is detailed below:

for (t=1 to t<=T)

{
ql=Ct
n,
qr <4y — in! (67)
i=1
%
ql <« CIZ _50111_“—-101/ - - S()j‘”()j, (68)
}

Initially the slack on each day is set equal to capacity available. Equation (67)
then reduces this value by an amount equal to the sum of all the production lots
scheduled in that period. Equation (68) uses the sequences generated by the sequencing
algorithm to further deduct setup time requirements to meet the schedule. Besides the
setup time required for the products produced on that day the equation also takes into
account the setup time required between the last product in the previous period and the
first product in the current period. However, if the same product is produced on two
successive days then it is possible that the same product is sequenced last on the previous
day and first on the next day and thus avoid a setup. Once the capacity requirements are
computed, it can be determined if the schedule is feasible or infeasible. An infeasible

schedule is one in which there exists at least one period in which g, < 0.
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To achieve feasibility either entire lots or parts thereof can be transferred to other
periods with positive slack. This shifting of lots may affect both the setup cost and the
inventory/backlogging costs of the schedule. Given a multiplicity of lot shifting options
an infeasibility elimination procedure must try to achieve feasibility with lowest increase
in the total schedule cost. Therefore, it is necessary to calculate the change in the total
cost caused by shifting a lot to achieve feasibility. However, the change in setup costs
cannot be calculated accurately because setup cost for a lot is dependent on the previous
product in the sequence and when production is shifted the sequence changes which in
turn changes the cost of the setup. To avoid this infinite looping the setup cost savings
can be estimated. A similar problem arises for setup times when lots are shifted from
one period to another. Capacity in the target period is checked for its ability to
accommodate the lot. In addition, to lot size sufficient capacity must exist to allow for
setup. Since sequence is not known an estimate of the setup time must be used. These
estimating techniques and a method to accurately calculate the change in

inventory/backlogging cost is described in the next section.

Calculating Cost Changes Caused by Production Shifting
First, the problem of estimating the changes in setup costs 1s addressed. To
overcome the problem described in the previous section it is necessary to convert the
sequence dependent setup costs and times for a product to sequence independent costs
and times. Dilts and Ramsing (1989) describe various ways in which this might be

achieved and also report that simple methods prove to be most eftective. Especially,
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those that deviate most from the expected value of setup provide the best results.

Accordingly, two estimating methods to be tried here.

1. MIN: assigns the minimum of all setup values possible for the product. This
technique grossly underestimates the cost and time required for setup. Since the
potential setup cost savings are underestimated, this technique tends to reduce the
size of the initial lots. However, lower setup time requirements allow for greater

mobility of lots in the feasibility elimination routine. s; = mins; ¥V j#/ and
J

S =minS; V j#i

o

MAX: assigns the maximum of all setup values for the product. This technique
grossly over estimates the cost and time required for setups. Since the potential
setup cost savings are greater than actual more lots are clubbed together initially
producing large lot sizes. However, large setup time requirements affect the
possibility of moving lots to other periods to achieve feasibility.

s =maxs;; Vj#iand&=maxS; V j=i
J J

While the changes in the setup cost can only be estimated the changes in the
inventory/backlogging cost can be determined accurately. This change in cost must be
computed with respect to the original demand requirements. Before the
inventory/backlogging cost for product 1t (H,) can be calculated inventory/backlogging
for p for each period (I,4) must be calculated.

],=]ﬂ,_l+x d

p Vie(l,T)and 1,,=0 (69)

u T Yo
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Equation (69) is obtained directly from constraint (7). This equation merely states that
inventory at the end of a period is essentially the sum of inventory at end of previous
period and production in the current period from which is subtracted demand in the
current period. The inventory/backlogging cost for the product is calculated using
equation (70) shown below. This equation is similar to the inventor/backlogging cost

component of the objective function described in equation (4).

1’-'f.1,L1t'>O

0, otherwise (70)

T
H/l = Zlkh,ulﬂt' —(1- k)b/ll/lf' where k =
t.|:

When production is shifted from an overloaded period t to a period with slack
capacity tg, the production lots of the affected periods are re-computed as

X'y €= X, — 17 and x] +17. Now the inventory in each period is re-

ptg <

X pug

computed using the new production lots as 1;,, using equation (69). Following which
the new inventory/backlogging cost is re-computed as H;, using equation (70). Finally,

the change in inventory/backlogging cost is given by equation (71).
AH;IZH;1—H/1 (71)
In this section, the methods used to calculate the changes in setup costs and
inventory/backlogging costs caused by production shifting was described. These
computations are widely used when lot shifting is considered to eliminate infeasibilities.
To overcome infeasibilities either the setup for the first product must be moved to the
previous period or production must be shifted to another period; this can be done in
several ways. All possible options are evaluated before one is selected, the routine that

eliminates infeasibility is discussed in the next section.
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Eliminating Infeasibilities

Overloading may be detected in a period as a result capacity requirement
calculations. These must be eliminated to make the schedule feasible. Sometimes this
can be achieved without incurring extra costs or even at some savings however, in most
occasions additional costs must be incurred. The production lot selected is the one that
contributes most to eliminate overtime at the lowest cost or maximum savings. To
achieve feasibility:
(1) setup time for the first product sequenced in that day can be moved to the previous

period,

(2) production can be moved backward, or
(3) production can be moved forward.

Options (2) and (3) can be achieved in more than one way. All combinations are
tried before selecting the option that provides the move with the lowest cost (maximum
savings) per unit of overload eliminated. A brief overview followed by the complete

details of the algorithm is presented below.

Overview of Algorithm to Eliminate Infeasibilities

Eliminating infeasibilities is a complex task because of a number of options have
to be tried to determine the lowest cost option. A general overview of the approach
adopted here is shown below. This approach first attempts to eliminate infeasibilities

without additional costs if possible.
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Initialize: V = w0

for (t=2tot<T)

{
if(q <0 & qui 21ad & So,, 0y, 2 12)
{
qe-1 < 91 4,
q,=0
}
}

for t=1tot<T)
{
while (q. <0)
{
V=w
for (i € ITy)
u, 1, V, tg = MIN(production shifting)
if (V=)
exit( )
else

{

Xy Xy =1
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(72)

(73)

(74)

(75)

(76)

(77)



X g < X g T71 (78)

re-sequence and calculate capacity

First an attempt is made to move the setup for the first product sequenced on a
day to the previous period. Equation (72) ensures that this move is made only if
infeasibility in the current period is eliminated. This makes certain that the setup time for
the first product in the current period is not accounted for twice when the algorithm
enters the while loop. An infeasibility in a period can be eliminated in this step only if
two conditions are satisfied:

1. slack is available in the previous period, and this is at least as large as the overloading

in the current period, and

.l\)

the setup time required for the first product is at least as large as the overloading in
the current period.

Once it is determined that infeasibility can be eliminated by shifting setup time,
equation (73) recalculates slack in previous period and (74) eliminates the overloading in
the current period. This method achieves feasibility without additional costs and is tried
first for all periods with infeasibilities, there is no need to re-sequence after this step. If
infeasibilities persist then the best combination of target period, quantity and item to
move is determined by executing equation (75) for each item with a production lot in the

overloaded period. If there exists a feasible target period in either the forward or
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backward direction production shifting function will find them, when no feasible target
periods exist equation (76) provides escape condition that prevents infinite looping. The
size of the lots are reassigned in equations (77) and (78). This may require that the
sequence and capacity availabilities to be re-computed. The production shifting function,
tries both forward and backward shifts, is at the heart of eliminating infeasibility and it is

described in complete detail next.

The Production Shifting Function

This function determines the item and the quantity to shift to the target period in
the scheduling horizon that produces the lowest cost per unit of infeasibility eliminated.
The routine is implemented for all t with infeasibility and all i.

for(t'=1tot'<T&&t'#1)

{
if (xir > 0 & qu = Xp) (79)
{
AH; - §;
TE (80)
if (z< V) (81)
V=z u=in=x,;tg=t, (82)
}
if (qe = (xi + 55 ) (83)
{
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=2 (84)
Xit
if (z< V) (85)
V=zu=1i1n=xy,tg ="t} (86)
}
if (xiy > 0 & q¢ > 0) (87)
{
v = min(|q, Xi, qc) (88)
= A (89)
v
if(z<V) (90)
V=zu=in=v,tg=t; ©on
}
it (qe > %) (92)
{
v = min(|qd, (qe- i), Xit) (93)
D+ AH (94)
z y
if(z< V) (95)
V=z,u=i;n=vtg=1, (90)
)
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The algorithm detailed above shows four different alternatives available for
shifting production. Each one is described in detail in the following paragraphs.

1. Move the entire lot to another period where the product is already produced; this
eliminates a setup. Equation (79) ensures that this lot shift occurs only if there is
sufficient capacity in the target period and that the product has a lot already
scheduled in that period. As is illustrated in equation (80), the per unit cost is based
on the difference between the change in the inventory cost calculated using equation
(71) and the estimated reduction in the setup cost caused by the elimination of the
setup in the current period. To encourage the shifting of the whole lot rather just
enough to eliminate infeasibility the divisor in equation (80) is lot size for the product
in the current period. Two scenarios are possible for relationship between lot size
and overload in the period. In the first scenario, lot size is greater than overload in
period. In this case, by having a greater divisor the cost of the lot shift appears more
attractive in comparison with other alternatives. In the second scenario, lot size is
less than overload capacity. In this case, lot size accurately reflects the overload
eliminated. Equation (81) ensures that this lot shift occurs only if there is a cost
reduction over the best combination so far. Equation (82) replaces the current values
of cost, item, quantity and target period with values that provide a lower cost.

2. Move the entire lot to a day on which no production is scheduled for the product.
Equation (83) makes sure that there is sufficient capacity in the target period to shift
the entire lot and for the estimated setup time. In this shift, there is a setup

eliminated and a setup added therefore the effect of the setup cost is nullified, while
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the change in inventory costs is reflected in equation (84). Once again, this equation
encourages the movement of an entire lot. Equation (85) ensures that this is the least

expensive alternative before reassignments in equation (86) are made.

(V8]

This and the next option might end up breaking the lot to achieve feasibility.
Breaking a lot is not an attractive alternative because there is no potential for setup
elimination. In this option, an attempt is made to move part of the lot to another
period in which the item is produced, this is assured by the if condition in (87).
Equation (88) ensures that the quantity moved does not exceed either; the lot size of
the item in the current period, what must be moved to achieve feasibility, or slack in
the target period. Once again, no setup is added or eliminated and hence the
incurred cost is just the change in inventory cost per unit of quantity shifted as stated
in (89). Equation (90) ensures that this option is only selected if it is less expensive
than other combinations and equation (91) reassigns the variables if this is true.

4. Finally, part of the lot can be moved to another period in which the product is not
produced and where the slack is not sufficient to accommodate the entire lot and the
setup time estimate. Equation (92) ensures that there is more than enough capacity
in the target period to accommodate at least estimated setup time. Since larger lots
tend to increase costs equation (93) makes sure that only a minimum of} (1) what is
required to be moved to eliminate infeasibility, (2) amount of production the target
period can accommodate, and (3) the size of the production lot for that product in
that period is moved. The unit cost of the move given in equation (94) accounts for

the added setup in the target period and the change in inventory cost. Equation (95)
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makes sure that this option is selected only if this is the lowest cost feasible option
available. If this is true variables are updated as shown in equation (96).

A lot can be moved as far back as desired without violating any conditions,
however, even if a single unit of production is moved to the next period the algorithm
must ensure that the move does not violate the maximum delay constraint. If the
maximum delay for backlogging is equal to the scheduling horizon (o = T) then this
constraint check can be ignored. Every time production is shifted forward a procedure is
executed to determine if it violates the maximum delay constraint; this procedure is

described next.

Maximum Delay Criterion Checking Procedure
The validity of a forward move depends not only on the number of periods
between the current period and the target period but also on the current inventory for the
product in the periods in between. Given t*, the target period, (t*>1) a partial or entire
lot of size m can be moved from t to t* only if © = 0 after the following loop is executed.
n=0
for (t' =ttot' =t*-1)
{
/'
it —m< —  Ddym) (o7
t"=t'-a +1

n=1 (98)
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Equation (97) checks if constraint (8) of the formulation presented in chapter I is
violated by shifting m units from t to t*. If this violated for any period between the
source and the target periods then equation (98) marks this move as an infeasible move.
This checking routine is executed before any forward movement is considered and when
the criteria is violated the lot shifting not considered.

The feasibility elimination routine does not always produce a feasible solution to
an infeasible problem. However, when a feasible schedule can be attained by moving by
shifting entire lots or parts thereof this routine ensures that this is attained in the most
economical manner. Once a feasible schedule is determined then a simple solution
improvement technique can be used to obtain a better solution this is discussed in the

next section.

Solution Improvement Technique

For single product dynamic demand problem without capacity constraints the
extreme point property of the Wagner-Whitin (Wagner and Whitin 1958) dynamic
program algorithm is a necessary condition for optimality. Here, this property is
extended for capacitated multi-item dynamic problem that allows for backlogging using
the regeneration point theorem discussed in chapter IIL.

For the situation in which no backlogging is allowed, the extreme point property
states that for any product i I;.1x; = 0 V' t for a solution to be optimal. Here two

extensions are proposed to the extreme point property theorem. These theorems hold
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good for a single item uncapacitated problem with backlogging. And with suitable
modification can be applied to multi-item capacitated problems.
Theorem 1: There exists an optimal schedule such that I;.;x; < 0 for all t.
Proof: From the regeneration point theorem we know that given t <k and
Xjp >0, X401 = X400 =. . .= Xjje—) = 0;and x;. > 0 there exists a period ',
t <t'< k-1 suchthatt'is a regeneration point. Without loss of generality let us

assume that t', t <t'< k — 1, is a point of regeneration, i.e. [, = 0. Also the following

k-1
capacity balancing equation is true Jj._; = [;p + Z(x,-,u —d;m). Since we already

t"=t'+1
k-1
know that, Zx,n =0 and I;;= 0, the capacity balancing equation reduces to
t"=t"+1
k-1
lip1= Z——d,-t--. Therefore, Iy.; < 0. We also know that x;. > 0. Hence,
t"=t"+1

3 I} _yx;, < 0 which gives an optimal solution.

Theorem 2: There exists an optimal schedule such that [;;x;, > 0 for all t.

Proof: This theorem will be proved by contradiction. Assume, without loss of
generalization, that I;;x; < 0 is part of an optimal solution. The proof is complete if we
can show that a better solution exists where this condition is not true. Ijx; <0 is only
possible if T;; <0 (since x; > 0 V' t). The production lot can be increased from x; to x; +
T;| at no extra cost. This results in a reduced cost schedule equal to the cost of

backlogging I;. Obviously, this is a better solution than the schedule where Iix; <0,
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hence the cost of the original schedule was not optimal. Since no restriction was placed
on the value of t the above discussion is true for all values of t.

The final solution is tested for the above properties and if there exists a situation
such that I;;.;x; > 0 or Lix; < O for any item and q, > 0 then production lot is shifted from
the closest period to the current period. If more than one item has the above criterion
then the one that reduces the cost most is selected. In the next three sections, the three

algorithms to solve the research problem will be detailed.

A Lot Shifting Algorithm (LS)

In this approach, the entire problem is considered as a whole and a greedy
algorithm is used to reduce costs by eliminating setups. The algorithm works as follows.
Step 1. Assign schedule = demand on each day

xp=dy Vit
Step 2. Use the sequencing routine to sequence production in each day. Calculate
available capacities on each day. A positive value indicates slack and negative value
indicates overloading.
Step 3. Move entire lots if the costs resulting from increased inventory or backlogging
costs is less than the potential setup cost savings. Potential setup cost savings are
estimated using one of the methods described previously. The estimated cost reduction

is computed from the following equations:

E,iszi—h,x(t—k)xx,-, if t>k (99)
Ep =8 -bx(k-)xx;, if 1<k (100)
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Equation (99) determines the estimated cost saving when production is moved
backward. Equation (100) estimates the cost savings when production is moved
forward. Any cost saving move can only be considered if there is sufficient capacity in
the target period. When production is moved forward an additional criteria described in
the previous section must be satisfied. The lot shifting part of the algorithm works as
follows:
while (.T.)

{

if (xj >0and q;. 2 x;,) (101)

savej, €, 1" 3 Ef=max(El )Y ie [LN Jitke [LT[:i=k;  (102)

if(E,J;,,'>O) (103)
{
len<—xju+xjtr (104)
Xjp =0 (105)

calculate capacity

else

Equation (101) makes sure that the target period has a non zero production lot

for the product in question and also capacity availability in the target period. Equation
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(102) executes a sequence of loops to identify the product and the source and target
periods that provide the maximum estimated savings. The "if" condition in equation
(103) checks if the potential setup cost savings are greater than increased inventory
costs. If maximum savings are less than O then no more cost saving moves are possible
and the while loop is exited. Equations (104) and (105) reassign the size of the
production lots in the source and target periods.

The lot shifting algorithm is similar to the one used by Dogramaci et al. (1981)
except that, here both forward as well as backward movement of lots are considered.
The salient features of this method are listed below.

1. Only the lot that promises the maximum savings, across all items and all periods, is
moved each time.

2. The moves do not create infeasibilities, however infeasibilities may persist due to the
nature of the original demand pattern.

3. All potential profitable moves are made before the lot shifting is stopped.

Step 4. Eliminate overloading using algorithm detailed earlier in this chapter.

Step 5. Improve the quality of solution using the methods described earlier.

The five step algorithm produces a low cost feasible schedule using a myopic lot
shifting algorithm. By addressing the feasibility issue at every move the algorithm is
restrictive in its movements of lots. An alternative approach would be to relax the
capacity constraints initially to allow for the unrestricted movements of lots. This is the

essence of the next two approaches to solving the problem.
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A Regeneration Algorithm (RA)

This algorithm is founded upon the regeneration point principle developed
originally by Manne and Veinott (1967). Two issues have to be addressed before their
solution procedure can be used as part of the algorithm proposed here:

1. formulation of the original research problem as a collection of single item problems,
and

2. adaptation of the solutions of the single item problems to the constraints of the
original problem.

The single item problem is formulated and a solution procedure is provided in
chapter III. The single item formulation is targeted at accommodating a time variant
setup cost however, setup in the research problem is sequence dependent and time
invariant. Hence, the time variant setup costs are replaced by the setup cost estimates
while solving the single item problem. All the rest of the information is available in the
original formulation.

When the production lots resuiting from the single item solutions are combined,
the resulting schedule is likely to be infeasible due to capacity overloading. Hence, it is
important that the solution be modified at the lowest possible cost to achieve feasibility.
Now the five step algorithm used in this approach is described below.

Step 1. Determine the optimal production lots in each period for one product at a time.
Step 2. Sequence the production and calculate capacity requirements.
Step 3. If the solution is feasible then stop further execution, else go to step 4.

Step 4. Use the infeasibility elimination algorithm to determine a feasible schedule.
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Step 5. Improve solution quality using methods described earlier in this chapter.

A potential problem with the above approach is that the lot size allocation may be
unwieldy in some periods and negligible in others. This may require that the infeasibility
elimination routine undo most of the lot assignments determined in step 1 of the
algorithm resulting in the final solution being far from the optimal one generated in step
1. This problem can be overcome if some sense of capacity limitations is introduced in
step 1. This is achieved through an intelligent modification of the above approach and is

described in the next section.

Regeneration Algorithm with "Overload penalty" (ROP)

The biggest drawback of the approach described in the previous section is that it
solves each item completely independent of others as if it were the only product in the
system. In this approach, between successive solutions to the single item problem a
“overload penalty” is added to the problem formulation. “Overload penalty” is a
measure that conveys to the successive formulations of the single item problems
information on the capacity usage of the previous items. The idea is to discourage vastly
overloading any period in the horizon. Since the lot sizing decisions in the later
problems will be affected by those made in the earlier problems, the sequence in which
the items are solved affects the final solution. For a successful implementation of this
approach, three issues must be addressed:

1. the sequence in which the items are lot sized

2. quantification of the “overload penalty”
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~

3. including the “overload penalty” into the single item problems
Sequencing of Items

Here, we have to determine a ranking schema for the items so that the ones with
a higher rank can be lot sized first when there are fewer capacity restrictions to consider.
Faced with a similar ranking problem Kirca and Kokten (1994) report that a ranking
system based on the total cost per unit demand is superior. For each item i, V;is
estimated using the economic order quantity (EOQ) concept. The average cost per unit
for an item is computed by dividing the EOQ cost per period by the mean demand per
period for that item. Then the item that has the largest average cost per unit is given a

higher ranking. Vi is calculated using the equation (106).

ALY .
Vi=t——— Vi (106)
1

Quantification of the "Overload penaliy”

The purpose of "overload penalty” is to discourage the single item regeneration
algorithm from scheduling production lots in periods during which other items are
already scheduled if inclusion of these additional lots is likely violate capacity constraints.
This can be achieved by adding the cost of eliminating infeasibility, caused by these
additional lots, to the policy costs in those periods in the single item dynamic
programming algorithm. This additional cost increases the cost of adding production
lots in overloaded periods, and the dynamic programming algorithm is likely to select
other alternatives to schedule the lots. However, the exact cost of eliminating

infeasibility is difficult to compute. Therefore, it is desirable that a algebraic relationship
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be established to a easily computed measure for calculating the cost of eliminating
infeasibility.

Infeasibility manifests itself as overloading, and cost of eliminating infeasibility is
the cost of eliminating overloading. Therefore, there is likely to be a relationship
between infeasibility elimination costs and overloading. Using capacity requirements,
calculation procedure described earlier overloading in each period can be easily
computed. Hence, establishing a algebraic relationship between cost of eliminating
infeasibility and overloading in a period is of interest here. Once this relationship is
established a "overload penalty" can be computed that is equal in order (linear, quadratic,
cubic, etc.) to the cost of eliminating infeasibility. Determining the order of the
polynomial relationship between cost of eliminating infeasibility and overloading is
discussed in the next few paragraphs.

When overloading occurs in a period, the infeasibility elimination procedure
eliminates overloading by shifting production to other periods with positive slack. The
procedure moves production to the period which results in least cost increase. When
overloading is much greater than capacity available, several lots or parts thereot have to
be shifted from the overloaded period. When multiple shifts are required to achieve
feasibility, initial lot shifts are made at much lower costs than later lot shifts. This is
because as lot shifts are made the best target periods are occupied by initial lots thereby
reducing or eliminating slack capacity in those periods. This causes later lots to be
moved to less desirable periods, much farther away from current period, to achieve

feasibility.

Reproduced with permission of the copyright owner. Further rebroduction prohibited without permission.



S0

The above argument supports the conjecture that the marginal cost (cost of
eliminating one additional unit of overloading) increases as overloading increases. This
can be explained with an example, consider two overloaded periods t' and t". The
overloading in these periods are denoted by qv and qp such that q¢ > qe. This means
overloading in period t" is greater than overloading in period t', since both q and qy- are
negative. In addition, let us assume that an additional lot of 1 unit (hour) is to be added
to production in these periods. It is conjectured here that the cost of eliminating
infeasibility caused by additional unit in period t" is greater than the cost of eliminating
infeasibility in caused by additional unit in period t'

Marginal cost is nothing but the sum of additional setup, inventory and
backlogging costs incurred to eliminate | unit of infeasibility. Setup costs are a constant
irrespective of the size of lot shifted and the target period. Increases in inventory costs
and backlogging are proportional to the number of periods between the target period and
the current overloaded period. Therefore, marginal cost is proportional to number of
periods between the current period and target period. However, from earlier discussion,
we know that the target period is likely to be further away as the overloading in a period
increases. The above discussion reinforces the conjecture that marginal costs increases
as overloading increases. This discussion can be captured by the following inference
sequence.

mayginal cost C change in inventory backlogging cost
change in inventory/backlogging cost OC overloading

therefore, marginal cost C overloading

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



81

As already stated marginal cost is nothing but the cost of eliminating one
additional unit of infeasibility. One unit of infeasibility is same as one unit of
overloading. Therefore, the above inference chain can be extended by an additional link
as follows:

Infeasibility cost
overloading

« overloading

from which the relationship between infeasibility cost and overloading is readily obtained

Infeasibility cos t « (overloading )2
By simple extension the above relationship is also true for "overload penalty"
computations. In conclusion, "overload penalty" is proportional to the square of number
of hours of overloading. Assuming a constant of proportionality of 1 equation (107)

states the equation that is used to compute the "overload penalty".

overload penalty = (overloading ) (107)
A mathematically complete equation for calculating the "overload penalty" is
described below. Let
Xt = lot size for item i in periodt ¥ 1 € A, and
xj = is a production lot for product j being considered for inclusion in period t

then

(.ZA (x,-t+s,~)+xj,+§/~—C,)2 if ‘ZZx (Xjp+8i)+xj+8;,-C 20
le e

¢ =

0 otherwise

(108)
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Equation (108) calculates the magnitude of the "overload penalty' using the
actual sizes of the production lots and estimated setup times. Setup times are estimated
because, sequencing issues are not addressed at this point, and therefore it is not possible
to calculate the exact time requirements for setups. The "overload penalty" as computed
above affects the quality of the optimal solutions to a lesser extent when magnitude of
overloading is low. However, the impact is more drastic if overloading is high. Issues
involved in incorporating the "overload penalty" into the dynamic programming
algorithm used to solve the single item problem with backlogging costs are described

next.

Inclusion of the “Overload penalty”

As stated in the previous section, "overload penalty" is included into the policy
costs of the dynamic programming algorithm. Equation (57) in chapter III is used to
calculate the cost of producing a lot in period t' to meet all demand between two
successive regeneration points t and k. This equation is modified as follows to account

for the "overload penalty"

k -1
ch =S+ ¢ +h Z(lt”—l')dn"+b/ Z(lz'—z”)a’,-, Y0k (109)
’II-__{I_*_ ’n=1+

The if condition in equation (108) ensures that the modified equation (109) is used only
when capacity limit is exceeded. The rest of the algorithm remains the same. At this

point, the complete regeneration algorithm with “overload penalty” is presented.
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Regeneration Aigorithm with “Overload penalty”
The six step algorithm proceeds as follows.
Step 1. Determine the order in which the single item problems are tackled.
Step 2. Determine the production lots in each period for one product at a time by
including the overload penaity in each period for each item.
Step 3. Sequence the production and calculate capacity requirements.
Step 4. If the solution is feasible then stop further execution, else go to step 5.
Step 5. Use the infeasibility elimination algorithm to determine a feasible schedule.
Step 6. Improve solution using methods described earlier in this chapter.

While this approach does not guarantee a feasible solution after step 2, it reduces
the scope of the infeasibility problem addressed in step 5 at the cost of modifications to
the optimal production lot allocations in step 2. It is expected that this additional
computational investment made in step 2 will be rewarded with an overall reduction in

the cost of schedules generated by this algorithm.

Summary
In this chapter, the approaches used to solve the research problem are described.
Before the algorithms were presented, the sequencing, capacity determination,
infeasibility elimination, and solution improvement methods which are present in each
approach were described in detail. These issues are closely interlocked,; their

considerations lend richness to the algorithms developed here. This richness
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distinguishes these algorithms from other techniques that are currently used to solve the

problem.

One of the goals of this research was to show that the computationally rich
algorithms developed here are superior to current methods used to solve the research
problem. One such technique is the EMQ calculations based technique that is used in
MRP II , and described in chapter II. Another base case that is used for comparison
purposes is the no lot size algorithm. The no lot size approach is a naive approach which
essentially boils down to producing all demand requirements in a single lot.

A potential problem with EMQ calculations is that integer multipies of the lot
size are not necessarily equal to the to total demand for the product. If this happens it is
handled as follows.

1. Only what is required to meet demand during the finite scheduling horizon is
produced, this might mean that the final lot is shorter than the EMQ calculations or
might be completely eliminated. For example, if the lot size for product A has been
calculated to be 8. The total demand for the product is 30. Hence, during the fourth
cycle of production the lot size of product A is reduced to 6 so that no excess
production occurs. And if some other products in the system require more than 4
cycles product A is not produced in those cycles because its cumulative demand has
already been satisfied.

2. Under some circumstances EMQ lot sizes may be rather small. More cycles are
required to meet demand in these instances. In these cases, relatively higher

proportion of time is spent on setup. For this reason, at the end of the scheduling
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horizon the quantity of production scheduled is less than cumulative demand for that
product. In these situations production lot allocation is continued till all the demand
1s satisfied.

To provide further understanding of the workings of each algorithm, a sample
problem is solved using each of the algorithms. A numerical example is generated and a
step by step solution is provided for each algorithm in Appendix A. However, no
inferences can be made regarding the performance of the algorithms from these
solutions. Experimentation is necessary to evaluate the performance of algorithms. In
the next chapter, computational experience with these approaches is presented, and

experimentation is performed to determine the validity and robustness of the algorithms.
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CHAPTER YV

EXPERIMENTAL PROCEDURE

This chapter focuses on the design and implementation of computational
experiments to test the performance of algorithms developed in this research. An
experiment consists of solving a series of problem instances that represent a wide variety
of factors that may influence the performance of the algorithms. Experimentation is the
process of setting goals for the experiments, identifying factors that influence the
performance of algorithms, conducting experiments in a controlled environment, and
analyzing the results using a statistical tool. The first step in experimentation is the
setting of goals for experiments. Goals of an experimentation process are expressed by
the hypotheses to be tested. Once the goals of the experiments have been determined,
the next step is to identify factors that can potentially influence the results of the
experiments. To determine whether a factor significantly affects the outcome of the
experiments, more than one instance value, or factor level, of the factor must be
experimented with.

Once the factors are identified, and before the algorithms are run over several
problem instances, it is necessary to identify the measurement tool used to study the
outcome of the experiments. In this research, the outcome is analyzed for the ability of
the algorithms to find a feasible and cost efficient schedule. The solution quality of an
algorithm is measured by the cost value of the schedule generated by the algorithm.
After the models are run on the complete data set, usually some kind of statistical

procedure is used to analyze the results of experiments. An introduction to the full
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factorial analysis of variance statistical procedure used in this study is presented later in

this chapter. First the goals of the experimentation process are reviewed.

Experimentation Goals
In this research, three heuristic algorithms have been developed to solve a class
of real world manufacturing scheduling problems. Barr et al. (1995) have identified two
requirements that must be satisfied when heuristic approaches are evaluated with
computational experiments. The experiments must be able to:
1. test the relative effectiveness of algorithms in comparison with one another and with
currently available solution techniques, and
2. describe the performance of the algorithms across several factor level combinations.
The goal of relative effectiveness experimentation is to test the quality of
solutions obtained by the algorithms proposed in this research with one another and with
current methods to solve the problem. The methods are tested against two base cases
discussed in chapter IV. The hypothesis to be tested in this regard is presented below.
Hypothesis 1: On the basis of the total schedule cost, at least one of the lot
sizing algorithms proposed here would out perform both the no lot sizing
method and the one based on EMQ calculations.
The logic behind this hypothesis is that the more computationally intensive algorithms
proposed here consider the more complete problem picture in solving the problem. On

the other hand the simpler methods do not consider all the information that directly affect
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the quality of the final solution. Which methods perform better than the other methods
proposed here is difficuit to predict.

Test of hypothesis 1 is the primary goal of this study. A broad comparison based
on typical measure of central tendency, such as means and variance, could be made given
a set of problem instances. However, this may not necessarily indicate whether one
algorithm is better than another in a specific category of problem instance. Hence, a new
hypothesis must be composed to test the latter issue.

The aim of descriptive experiments is to gain understanding about performance
of algorithms and the factors that influence their performance. The factors could either
influence the performance individually or in combination. The hypothesis to be tested in
this regard is presented as follows.

Hypothesis 2: The performance of the algorithms proposed here will be

affected by the combination of factors that determine the inventory

related production costs and demand environment.

The reasoning behind hypothesis 2 is that, each method is so information intensive that
the quality of the final solution is affected by the multitude of factors involved. The
factors that influence inventory related production costs are, inventory holding factor
(hy), setup cost per hour and backlogging cost factor (b;). Demand environment is
determined by the pattern of customer requirements and the utilization of resources in
the production system.

A strategy is adopted to test for the two hypotheses stated above. Hypothesis 2

is first tested. If the results indicate that the factors have no influence on the quality of
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solutions then hypothesis 1 can be tested directly. However, even if a semblance of
significance is detected then hypothesis 1 must be tested at each factor (or factor
combination) that influences the quality of solution. The above strategy ensures that the
quality of ANOVA results obtained by test of hypothesis 2 is not affected by extraneous
factors that may affect the outcome of the algorithms. A complete discussion of these

factors is presented in the next section.

Experimental Factors
In the past, as a result of research in the area of lot sizing in a dynamic demand
environment, certain factors have been identified as having an effect on the performance
of heuristics (Dilts and Ramsing 1989, Maes and Van Wassenhove 1986). These
experimental factors can be divided into one of the following three categories:
1. nature of demand,
2. inventory related production costs, and

solution approach.

w

Nature of Demand
The factors in this category model the demand environment in which the
production system is trying to meet customer requirements. Four factors determine the

nature of the demand.
1. Size of the problem: This is determined by the number of products produced in the

system and the duration of the schedule horizon. When there are very few products
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and scheduling horizon is short, the performance of more complex algorithms
deteriorates in comparison with optimal solutions (Dogramaci et al. 1981). This is
because even the smallest changes in schedules causes a relatively large change in the
cost of the schedule. For this reason, it is necessary to test the influence of problem
size on the performance of algorithms. Here two sizes are considered: small and
large. Small problem instances are those that have 6 items and a scheduling horizon
of 10 days. Large problem instances have 15 products and a scheduling horizon of
30 days. Large problems are similar to the size of the problem faced in the
motivating case.

Type of demand: EMQ lot size calculations are based on average daily demand.
Hence, it is likely that the quality of its solutions are sensitive to the deviations of
actual daily demands from average values. For this reason, two types of demand
patterns are to be tested. Smooth demand patterns are those in which every product
has almost similar demand in each period. Lumpy demand is the case when all the
demand for the product over the scheduling horizon occurs in a few periods.
Capacity requirements: The ability of algorithms to find feasible solution is affected
by the utilization of the constrained resource. This factor measures the capacity
requirements of the demand for all items in each period. Loose capacity and tight
capacity are to be tried. Loose capacity is when the demand in a period is equal to
50% of capacity available and tight capacity is when demand in each period is 75%
of capacity available. This is acceptable as these utilization values do not take into

account the time required for setup. Setup times, when switching from one product
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to another, are sequence dependent and vary between 4% and 25% of the capacity
available in each period. These values are similar to one encountered in the
motivating case.

4. Backlogging limit: This factor controls the maximum delay allowed in meeting
customer due dates and is the same as the o value used in the problem formulation.
The tightness of the backlogging constraint potentially controls the ability of the
algorithms to find a feasible solution. Here this value is to be varied over two levels,
10% and 50%, of the scheduling horizon. For small problems, this works out to

values of 1 and 5 periods and for large problems it is 3 and 15 periods.

Inventory Related Production Cost Factors
The factors included in this category are setup cost factor, holding cost factor,
and backlogging cost factor. It has been reported in the literature (Dogramaci et al.
1981, Dilts and Ramsing 1989, among others) that more than the actual values the ratios
amongst these various cost factors are more important. Hence, in generating the data
sets for this study the holding cost factor is assumed to be one and the setup and
backlogging cost factors are varied as follows.
1. Backlogging cost factors: Hsieh et al. (1992) conducted an experimental study in
which they found the ratio between backlogging cost factor and inventory cost factor
to be significant. The two factor levels used in their study was 1.2 and 2. To show a
greater importance for due date performance, the two levels of backlogging to

inventory cost ratios studied here are 2 and 5.
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2. Setup cost factors: Setup times are generated randomly and are in the range of 1 to
6 hours. In this study, the setup costs are also sequence dependent for each product
and are computed from setup time requirements for that sequence. Here, two factors
are used as multipliers to convert setup time into setup cost. They are 2 and 8. This
means that setup cost/holding cost factor could be as low as 2 or as high as 48 (this
occurs when the setup time between two products is 6 hours and a setup cost factor

of 8 is used).

Solution Approach

Given a set of demand and setup data this category of factors determine the
method used to solve the problem. The solution approach is determined by the
algorithm used to solve the problem and the setup estimating technique used. The factor
levels for these factors are detailed below.

1. Algorithm: this factor is varied over 5 levels, which include the three methods
proposed here and the two base cases. These are, lot shifting algorithm (LS), a
regeneration algorithm (RA), regeneration algorithm with “overload penalty” (ROP),
economic manufacturing quantity (EMQ), and no lot sizing method (NL).

2. Setup estimator: this factor is varied over two levels namely MIN and MAX. MIN

uses the minimum of all possible setup for the product and MAX uses maximum

possible setup for the product.
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To study the independent influence of experimental factors in the three categories
listed above, it is essential to eliminate other external factors that can influence the
results. To control the experimental conditions the following assumptions are made.

1. The holding cost factors are equal for all products. Holding cost factor for an item is
proportional to space required to store one hour of production for that item and cost
of producing one hour of that item. Typically, in a manufacturing environment larger
products are more expensive to produce, and also their production rate is lower than
smaller products. Hence, on balance space requirements and cost of production tend
to be similar for all items. This justifies the assumption of equal holding cost factors
for all items. However, in some production systems the above argument does not
hold. In such cases, holding cost factor differences cannot be ignored and an
additional factor must be included in the experimentation.

2. Backlogging cost factors are equal for all items. This cost is the penalty levied for
late delivery of items. This penalty is usually used to indicate a preference for which
products to be backlogged. Here, it is assumed that all orders are of equal

importance, therefore backlogging cost factor is equal for all products.

(8}

Maximum delay (backlogging limit) is equal for all products. This factor controls the
duration of backlogging allowed. Backlogging requirements are dependent on the
demand pattern for a product and utilization of the system resource. Variations
amongst products would affect factors already included in the study . For this reason

different delay values for different items is not studied.
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4. Capacity availability is maintained constant. In a typical system, the day to day
capacity availability remains constant, unless affected by breakdowns and other
downtimes. It is assumed that the influence of these factors on capacity availability is
minimal. In the motivating case three shifts are run on the coating machine per day.
To reflect this situation capacity availability is held constant at 24 hours per day
throughout the study.

Each of the factors and their levels included in this study has been determined
after careful consideration of the prevailing values in the motivating case and from
published literature. Table 1 summarizes the factors to be used in the experiments. For
each factor name, it identifies a factor symbol used represent the factor in the
experiments, the number of factor levels for each factor and the instance value of each
factor level. Once the factors and factor levels have been identified the next step is to
determine the performance measure and the methodology adopted to generate the data

sets for the experiments.

Factor Name Factor  Number Factor Level Values
Symbol of Levels
Algorithm A 5 al = LS; a2 =RA; a3 = ROP;

a4 = EMQ); a5 = NL

Setup estimator B 2 bl = MAX; b2 = MIN

Size C 2 cl =6 products 10 periods (small)
¢2 =15 products 30 periods (large)

Demand type D 2 d1 = smooth; d2 = lumpy

Capacity utilization E 2 el = 50% (low); e2 = 75% (high)

Setup cost factor F 2 f1 =2 (low); £2 = 8 (high)

Backlog cost factor G 2 ¢l =2 (low); g2 = 5 (high)

Backlogging limit H 2 h1 = 10% (low); h2 = 50% (high)

Table 1. Factors and factor levels used in experiments
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Performance Measure and Data Sets
While the most important performance yardstick is the cost of schedules

generated, it is also important to compare the algorithms in terms of their ability to find
feasible solution to a given problem set. Hence, the first performance measure merely
counts the number of feasible solutions determined by the algorithm under consideration.
Regarding the conventional methods, because of the fact that they neglect backlogging
limit, the likelihood of an infeasible solution is quite high. Nevertheless in this research,
they are given the benefit of doubt, and an assumption is made to consider all solutions
as far as conventional methods are concerned. For this reason, feasibility analysis is only
performed on the algorithms developed in this research. There are two aspects to the
feasibility of a schedule.
1. Capacity feasibility: The ability of an algorithm to generate a schedule whose

capacity requirements are less than or equal to capacity available on each day.

Capacity infeasibilities are indicated by a negative slack value at the end of

infeasibility elimination routine in any of the periods.

o

Backlogging limit feasibility: The ability of algorithms to tind a schedule in which
customer requirements are satisfied within the maximum delay duration from the due
date. Each algorithm considers this constraint in the lot shifting procedure and also
in the capacity infeasibility elimination procedure. Therefore, this requirement is
embedded into every schedule that is generated by the algorithms. For this reason

maximum delay feasibility need not be checked.
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Therefore, a solution is termed feasible only if the final solution determined by
the algorithm does not violate capacity requirements in any period of the scheduling
horizon. The second performance measure is based on the total schedule costs which is
the sum of inventory, setup, and backlogging costs. However, the absolute cost depends
on the demand data and setup data input into the algorithm. To eliminate the effect of
data, a comparative performance measure is used. Ideally, the performance measure
would be based on the optimal value for a problem instance but, in the absence of such
information, the lowest feasible cost generated amongst all combinations of algorithms
and setup estimator is used. The performance measure is calculated as follows:

1. each data set is run with all solution approaches,

o

the lowest cost amongst them is determined, and

this lowest cost is then divided into the cost determined by each solution approach.

W

For each data set the performance measure is calculated using equation (110):

—_— T e~ i 3 = ’)
ab = Srin (TCyp) a=12345and b=12 (110)
Y a,b

where PM,, is the performance measure for algorithm a using setup estimator b, and
TC, is the total cost of the schedule generated by that combination. The advantage of
using a relative performance measure is that it eliminates the inherent variances in the
cost between data sets for a given treatment, i.e. the performance of a solution approach
is more likely to be stable for a certain combination of demand and inventory cost

factors.
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The data sets, demand, and setup values, are generated randomly to fit the profile
of the demand treatment being considered. The following procedures are adopted for
generating smooth and lumpy demand patterns of desired capacity utilization. In any
event, negative values are not allowed for any product on any day. For smooth demand
pattern, initially set d; = rand(1,4) for all i,t, where the function rand(m, n) generates a
random number between m and n, both inclusive. If capacity requirement is not what is
desired then, in the period in which requirements are not satisfied, do the following:

1. randomly select a product and adjust (increase or decrease) its demand by | unit,
2. if requirements satisfied then EXIT else repeat 1.

In the case of lumpy demand pattern, initially set d;, = rand(1,8) for all i,t. Now
for each product set d; = 0 for 0.6*T randomly selected days. Ensuring capacity
utilization is handled using different approaches based on whether there is a shortfall or
excess. If capacity requirement is less than what is desired then:

1. randomly select a product with non-zero demand and increase its demand by | unit,
2. if requirements satisfied then EXIT else repeat.
If capacity requirement is greater than what is desired then:
1. randomly select a product and reduce its demand by 1 unit,
2. if requirements satisfied then EXIT else repeat 1.

Using the procedure described above, it is possible to generate multiple sets of
data that meet the demand pattern requirements. The number of data sets that should be
generated for each demand pattern depends on the statistical procedure used to analyze

the results and confidence desired in the results. These issues are discussed in the
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"Analysis of Variance" section later in this chapter. At this point, it suffices to state that
10 data sets are generated for each demand pattern.

A complete listing of the demand data and the setup data used for
experimentation in this study is listed in Appendix B. Essentially, eight sets of demand
data are generated. The eight demand data sets are determined by the combination of
problem size, demand type and utilization factor levels. Ten different problem instances
are generated for each demand data set. A complete listing of these factor level
combinations is provided in Table 2. There are only two sets of setup time matrices
used; one for the small problem size and another for the large problem size. With
demand data sets, setup time matrices and factor levels identified, computational

experiments can be carried out.

Number Size Demand Type Utilization
1 6x10 smooth 50%
2 6x10 smooth 75%
3 6x10 lumpy 50%
4 6x10 lumpy 75%
5 15x30 smooth 50%
6 15x30 smooth 75%
7 15x30 lumpy 50%
8 15x30 lumpy 75%

Table 2. Demand data sets

Computational Experience

Each of the eight demand data sets are solved at 4 possible combinations of

inventory cost factors and 2 possible values of the backlogging limit factor. Table 3
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provides a complete listing of these 8 factor combinations. In turn each of these 8 factor

combinations are solved using 10 possible combinations of solution approach listed in

Table 4. Hence, there are a total of 8x8x10 factor level combinations, called treatments,

to be tested. With 10 repetitions in each treatment there are a total of 640x10=6400

problem instances. The algorithms are implemented using the C programming language

on a IBM® Powerstation-220™ workstation, using the RISC System/6000™ architecture,

running a UNIX™ operating system.

Number

Setup Cost Factor

Backlogging Cost Factor

Maximum Delay

1

00 N OV Wy W N

2

o0 00 00 OO0 N NN

(W2 1 (O T O VL TR U, T (S I (8

wn

10%
50%
10%
50%
10%
50%
10%
50%

Table 3. Complete list of inventory costs and maximum delay factors

Solution Approach Algorithm Setup Cost Estimator
1 LS MAX
2 LS MIN
3 RA MAX
4 RA MIN
5 ROP MAX
6 ROP MIN
7 EMQ MAX
8 EMQ MIN
9 NL MAX
10 NL MIN
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All the 6400 problem instances were run, and the following observations were
made regarding the computational requirements for the algorithms.
1. All problems were solved to conclusion within reasonable CPU time and memory

space requirements.

o

The LS algorithm, when used to solve large smooth problems at low utilization level,
requires the most number of computations and hence takes the most CPU time to

find a feasible solution.

W

The ROP takes considerably less computational effort than the RA algorithm for a
given problem. This is because the initial single item problem overloads capacity to a
greater extent in the RA algorithm and it takes longer for the infeasibility elimination
algorithm to eliminate infeasibilities in this case.

The solution obtained by each algorithm is shown in Appendix C. This appendix
lists the actual cost of the schedule generated by each algorithm for each of the ten
replications. The keyword marker “INF” indicates that no feasible solution was found to
the problem. The computational requirements for the algorithms are reasonable, even
for large problems, and for this reason no further analysis is performed with respect to
the CPU time and memory requirements for the algorithms.

Output of the experimental runs are then prepared for statistical analysis. This is
a two step process:
1. all infeasible results of the algorithms proposed here are removed from further

analysis because their costs do not reflect the true costs of the schedule, and
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2. the performance measure of each problem instance is computed using methods
previously described.
This resulted in the loss of 1070 data points from the full factorial ANOVA design
proposed in the next section. This loss of data results in unbalanced ANOVA design
with empty cells. While a balanced design is preferable there are alternative statistical
techniques available for unbalanced ANOVA. The general linear model (GLM)
procedure of the SAS™ statistics module was used for analysis. The software was run
on a IBM 3090 mainframe computer running the CMS operating system. The use of
statistical output to make inferences about the performance of the algorithms and test the
hypotheses is addressed in the next chapter. In the next section, a brief overview of the

ANOVA procedure is presented.

Analysis of Variance

Analysis of variance (ANOVA) is a popular and robust statistical procedure for
isolating the sources of variability in a set of measurements. When two or more factors
are to be investigated simultaneously, as in this study, a multi-factor ANOVA must be
used. In multi-factor ANOVA, a treatment corresponds to a combination of factor
levels, for example in the study proposed here there are a total of 8 factors with 5
algorithms and each of the remaining factors over two levels so there are a total of 5x27
= 640 treatments.

Use of an ANOVA model is based on the scope of the interpretation of results.

Three types of ANOVA models can be used in a multi-factor study.
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Model I ANOVA: also called fixed effects ANOVA, it is used to study factors that
are of intrinsic interest, i.e. the results of the study are applicable only to the factor
levels used in the study.

Model I ANOVA: also called random ANOVA, it is used in studies where all the

factor levels are a representation of a wider population and interest is in the larger

population.

Model IIT ANOVA: also called mixed model ANOVA, are used in studies where

some factors are intrinsic and others represent a wider population.

The statistical methods used to evaluate a model are dependent on the type of model

used. Hence, it is necessary that the correct model be identified for this study. In order

to test the hypotheses stated earlier a fixed effects ANOVA model will suffice, besides

the underlying statistics of the fixed effects ANOVA model are more robust than either

the random ANOVA or mixed model ANOVA (Neter et al. 1990). Specifically, the

results of mixed model ANOVA and random ANOVA are sensitive to departures from

the following requirements for the ANOVA model:

1.

(o8]

the probability distribution associated with each treatment is normal distribution,
each probability distribution has the same variance (standard deviation), and
the observations for each treatment are random observations from the corresponding

probability distribution and are independent of the observations at other treatments.

On the other hand, the fixed effect model is robust to deviations from normal distribution

and unequal variances between treatments. However, its is sensitive to non-

independence of observations between treatments. Fortunately, this problem can be
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eliminated by randomization. Suitably, the data used in this study are generated by
random number generators. For the above reasons, a fixed effects model is to be used in
this study. Therefore the data does not have to be checked for deviations from the three
assumptions listed above.

Like other statistical procedures ANOV A models are subject to Type I and Type
IT errors. In ANOVA, Type I error represents the risk of determining a factor effect to
be significant when actually it is not. Type II error represents the risk of determining a
factor effect to be insignificant when in reality it is. The protection against both Type |
and Type Il errors in ANOVA is controlled by the number of repetitions (sample size) at
each treatment. The sample size has to be large enough to detect important differences
with high probability. However, if the sample size is too large then unimportant
differences between treatments become important with high probability (Neter et al.
1990). Therefore, determining sample size is an integral part of designing an analysis of
variance study. Four factors influence the selection of a sample size (Bratcher et al.
1970):
1. number of factor levels,
2. the smallest difference the experimenter would like to detect (expressed by the

number of standard deviations),

risk of type 1 error, and

[US]

4. risk of type 2 error.
The primary goal of this experiment is to determine if the differences between the

performance measure means of the solution approaches are significant (tested by
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hypothesis 1). Therefore, the number of factor levels is 10 (5 algorithms with 2 setup
estimation techniques each). Type I error level (risk of asserting that a difference exist
when the true difference is 0) should be maintained low. This greatly increases the
confidence in the results when statistical results indicate that there is significant
difference between the means. Accordingly, the risk of type | error is fixed at 0.05
(confidence interval = 0.95). Bratcher et al. (1970) have determined sample sizes for
several combinations of the above factors. For type 1 error of 0.05 and number of factor
levels = 10. Table 5 shows the sample sizes for some values of type II error and smallest

difference to be detected.

Smallest difference to be detected (number of std. dev.)

Type 2 error 1 2 3
0.30 27 6 4
0.20 33 9 5
0.10 41 11 6
0.05 48 7

Table 5. Some sample sizes for type | error = 0.05 and number of levels = 10

(Bratcher et al. 1970)

When very close means are to be analyzed (number of standard deviations = 1),
sample size is very sensitive to type 2 error level. However, at larger deviations the
sensitivity of sample size to type 2 error level is dramatically less. A preliminary perusal
of the output obtained (listed in Appendix C) indicates that there is substantial difference
between the means of performance measure. Hence, the differences between means for

significance can be set at a relatively high value. For example, to detect means that are
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at least 2.5 standard deviations apart with 10 repetitions per treatment, risk of type 2
error can be limited to 0.05.

In general, larger sample sizes are required to detect smaller deviations and place
a tighter control of the error levels. In this study, it is far more critical to control type |
error than type 2 error. Increasing the risk of saying differences are insignificant when
they actually are not (type 2 error), merely increases strength of the claim when
algorithms proposed here significantly out perform currently used techniques. From the
above discussion, it can be determined that the number of standard deviations and type 2
error level are not too critical to this study. Fixing the differences between means to be
detected at 2 and risk of type II error at 0.15, in addition type | error at 0.05 and number
of levels at 10, a sample size of 10 is obtained.

Therefore, experiments have been performed at 10 repetitions for each treatment,
this number is typical for similar studies (Dilts and Ramsing 1989). When the number of
repetitions is equal across all treatments then the experimental data is said to be balanced
otherwise the it is unbalanced. The presence of infeasibilities converts a balanced
analysis to an unbalanced analysis. When unbalanced ANOVA is used alternative
statistical procedures are available to determine the significance of factors.

ANOVA results indicate the main factors and/or interaction factors that are
significant. Further analysis is required to determine if one solution approach is
significantly better than others. For example, as a result of ANOVA if we decide that the
algorithm factor has a significant effect, then we would still be interested in determining

which algorithm provides the better results amongst all the algorithms studied. For this
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purpose the Tukey method of multiple comparison described by Neter et al. (1990) is
used. This method holds the confidence in the tests at the same level as the type | error

level selected for the model.

Summary

In this chapter the experimental procedure used to analyze the proposed
algorithms were laid out. The goals of the experiments were set and the hypotheses to
be tested were presented. Factors that are to be varied and their factor levels were
discussed. In addition, the factors that were to be held constant were also detailed. The
procedure adopted to generate random data sets was presented. Initial observations
from computational experimentation were described. The appropriateness of ANOVA
statistical procedure and a discussion of selection of a sample size was also presented.

Once the experiments have been performed and SAS™ software applied to the
output of the experiments the results are ready for analysis. Analysis of results is
necessary to determine which algorithm finds the most number of feasible solutions and

to test for hypotheses. These are discussed in the next chapter.
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CHAPTER V1

ANALYSIS OF RESULTS

This chapter presents the results of the feasibility study and analysis of the
experimental results with ANOVA. First, the capacity requirements of the final solution
are examined. If the requirements are less than the capacity available then we a have
feasible solution and the final cost can be accepted. However, even if capacity
requirements are violated for one period then that schedule is infeasible and the final cost
cannot be accepted as the true cost of that schedule. Following the feasibility study,
ANOVA is performed on the feasible solutions to test for hypothesis | and hypothesis 2.
The test of hypothesis 1 is dependent on the results of hypothesis 2, if the interactions
are not significant then the factor level means of the algorithms can be compared.
However, if some or all of the factor interactions are significant then treatment level
means have to be compared. Therefore, the test of hypothesis 2 is performed first.
Before any of the hypothesis are tested the feasibility results of the algorithms are

analyzed.

Feasibility Results
The feasibility requirements are only tested for the three algorithms proposed
here because, for the two bases cases feasibility is not required for the final cost to be
accepted. The ability of an algorithm to provide a feasible solution is critical, because it
affects the applicability of the solution approach in a real world production environment.

However, in a complex problem, like the one addressed here, it is difficult to determine if
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the demand and inventory cost related factors make the problem inherently infeasible.
Therefore, in some problem instances, especially at high utilization levels, the ability of
an algorithm to find feasible solution might be under estimated. The ability of the
algorithms to provide a feasible solution is examined below.

The feasibility results for LS, RA and ROP are presented in Tables 6, 7, and 8
respectively. The factor symbols used in this table are same as the ones outlined in Table
1. Each cell in the tables indicates the number of feasible solutions that were found for
the treatment represented by that cell, out of 10 problems that were tested for that

treatment. First the feasibility results of the LS algorithm are analyzed.

bl b2
cl c2 cl c2

di d2 di d2 dl d2 dl d2
el, fl, g1, hl 10 10 10 10 10 10 10 10
el, fl, g1, h2 10 10 10 10 10 10 10 10
el, f1, g2, hl 10 10 10 10 10 10 10 10
el, f1, g2, h2 10 10 10 10 10 10 10 10
el, 2, gl, hl 10 10 10 10 10 10 10 10
el, 2, g1, h2 10 10 10 10 10 10 10 10
el, 2, g2, ht 10 10 10 10 10 10 10 10
el, 2, g2, h2 10 10 10 10 10 10 10 10
e2, fl, gl, hi 0 8 0 0 0 9 0 0
e2, fl, g1, h2 0 10 0 0 0 10 0 0
e2, fl1, g2, hl 0 8 0 0 0 9 0 0
e2, f1, g2, h2 0 10 0 0 0 10 0 0
e2, f2, g1, hl 0 7 0 0 0 10 0 0
e2, 12, gl, h2 0 10 0 0 0 10 0 0
€2, 2, g2, hl 0 3 0 0 0 9 0 0
€2, 12, g2, h2 0 10 0 0 0 10 0 0

Note: factor symbols are defined in Table 1

Table 6. Feasibility results for the LS algorithm
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From Table 6 it can bee seen that of the 128 treatments solved with the LS
algorithm, on 48 occasions it did not find even a single feasible solution to the 10
problems at that treatment. On the whole the LS algorithm did not find feasible solution
to 490 out of the 1280 problems presented to it. When high utilization problems alone
are considered the algorithm found solutions for only 150 out of the 640 (about 23%)
problems presented to it. Furthermore, the algorithm did not find a single feasible

solution out of the 320 high utilization uniform demand problems presented to it.

bl b2
cl c2 cl c2

dl d2 d1 d2 dl d2 dl d2

el, f1, gl, hl 9 10 10 10 10 10 10 10
el, fl,gl,h2 10 10 10 10 10 10 10 10
el, fl, g2, hl 9 10 3 10 10 10 10 10
el, fl,g2,h2 10 10 10 10 10 10 10 10
el, 2, g1, hl 1 10 3 10 10 10 10 10
el,f2,gl,h2 10 10 10 10 10 10 10 10
el, 2, g2, hl 6 8 0 9 10 10 10 10
el,f2,g2.h2 10 10 10 10 10 10 10 10

e2, f1, gl, hl 0 3 0 0 0 10 0 0
e2, fl,gl,h2 10 9 5 2 0 10 0 0
e2, f1, g2, hl 0 3 0 0 0 10 0 0
e2,fl, g2, h2 10 9 1 4 0 10 0 0
e2, 12, g1, hl 0 1 0 0 | 5 0 0
e2, 12, gl, h2 10 9 10 10 10 10 0 0
e2, 12, g2, hl 0 0 0 0 3 4 0 0

e2,f2,2, h2 10 10 10 9 7 10 0 0

Note: Factor symbols are defined in Table |

Table 7 Feasibility results for the RA algorithm

The reason for these disappointing results can be found in the way the algorithm

operates. The LS algorithm is initiated by assuming a schedule equal to the demand
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matrix. When this initial schedule is sequenced and capacity requirements calculated
capacity requirements are greater than capacity availability in every period. This does
not leave the algorithm any room to maneuver, as the capacity availability is checked
before the lots are shifted. This situation is further aggravated in uniform demand
environment where there are more products in each period of the demand matrix,

causing increased setup time requirements.

bl b2
cl c2 cl c2

dl d2 dil d2 dl d2 dl d2
el,fl,gl,hl 10 10 10 10 10 10 10 10
el,fl,gl,h2 10 10 10 10 10 10 10 10
el, f1, g2, hl 10 10 10 10 10 10 10 10
el, f1, g2, h2 10 10 10 10 10 10 10 10
el, f2, g1, hl 10 10 10 10 10 10 10 10
el, 2, g1, h2 10 10 10 10 10 10 10 10
el, 2, g2, hl 10 10 10 10 10 10 10 10
el, 2,82, h2 10 10 10 10 10 10 10 10
e2, f1, g1, hl 9 9 0 ] 10 10 10 9
e2, f1, g1, h2 10 10 10 10 10 10 10 10
€2, f1, g2, hl 10 8 0 0 10 10 10 10
e2,fl, g2, h2 10 10 10 10 10 10 10 10
e2, 2, g1, hil 1 3 0 0 9 10 10 6
e2,f2,gl,h2 10 10 10 10 10 10 10 10
€2, 12, g2, hl 1 4 0 0 10 9 10 7
€2, 2, g2, h2 10 10 10 10 10 10 10 10

Note: Factor symbols are defined in Table 1

Table 8. Feasibility results for the ROP algorithm

The RA algorithm ended up with infeasible solution for 457 out of the 1280

problems it was used on. Similar numbers for the ROP algorithm is 124 out of 1280.

The RA algorithm by ignoring the capacity requirements initially is able to find more
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feasible solutions to the uniform demand high utilization problems, 87 out of 320
compared with 0 out of 320 for the LS algorithm. However, for this very same reason it
fails to find a feasible solution for 42 out of the 640 low utilization problems, whereas
the LS algorithm was able to find feasible solutions for all of these problems. This is
caused by the unrestrained overloading of certain periods by the unconstrained single
item optimization routine solved initially. The overloading is so great that the
infeasibility elimination routine cannot find feasible periods to move the excess capacity.
From the ROP feasibility results, it can be seen that placing restraints on the initial single
item routine does increase the chance of finding a feasible solution. However, for some
treatment combinations none of the methods proposed here are able to find a feasible
solution. When all the problem instances are considered, there are only 10 out of 640
(1.6%) for which the ROP problem with the MIN setup cost estimator did not find a
feasible solution. This is a very low percentage considering the fact that it is not known
if these problems have a feasible solution at all.

Analysis of feasibility results indicates that ROP algorithm is superior to RA and
LS algorithms for finding feasible solutions. However, it might very well be that the
other two methods out perform the ROP algorithm in instances when they do find
feasible solutions. Besides, it is yet to be determined if these algorithms are in fact better
than the base case methods namely, EMQ and NL. Before such comparisons can be
attempted, it is necessary to determine if the performance of the algorithms is aftected by

the interaction of the algorithms with nature of demand and inventory cost factors. This
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requires a test of hypothesis 2 stated in chapter V. The testing methodology and the

results are described in the next section.

Test of Hypothesis 2
As per the strategy presented in chapter V, hypothesis 2 is first tested. The

results of the unbalanced ANOVA are first examined for the importance of the
interactions between main effects. Testing methodology for hypothesis 1 is dependent
on the results of test for hypothesis 2. If interactions are unimportant then the same
ANOVA model can be used to test for hypothesis 1. On the other hand, if the
interactions are important then, the ANOVA model has to be modified before hypothesis
1 is tested. Hence, at this stage of the statistical analysis we are merely interested in the
presence of interaction effects between the factors. The test for hypothesis 2 can be
formally stated as

H, : Interaction effects are significant

H, : Interaction effects are not significant
The relevant results of the SAS output for ANOVA model are presented in Table 9. The

F value for the interaction effects is given by the equation

7 Mean Square [nteractions

= - . For . = 0.05 the decision rule becomes
Mean Square Error

If F* > F(0.95, 539, 4779) conclude H,
If F* <F(0.95, 539, 4779) conclude H,
F*=62.79 and F = 1, accept H,. Therefore, with a confidence of 95% (o = 0.05) the

results indicate that the interactions are important.
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Source DF Sum of Squares Mean Square  F Value
A*B*C*D*E*F*G*H 539 75266.64 139.64 62.79
Model 550 177445.45 322.63 145.07
Error 4779 10628.40 2.22

Corrected Total 5329 188073.86

Note: Factor levels are defined in table 1

Table 9. ANOVA results for test of hypothesis 2

However, the reliability of the ANOVA results in this particular instance is
questionable. This is caused by the unbalanced nature of the input data. Especially,
presence of empty cells (treatments at which at which no data are available) leaves the
software to make assumptions of the data that can be undesirable (Neter et al 1990).
However, the ANOVA results reinforce the influence of factors observed in the
feasibility analysis. Therefore, it seems reasonable to assume that interactions are
significant. This is a safer conclusion to arrive at than to decide that interactions are not
important, as supported by the following analysis.

The first option is to test further (test for hypothesis 1) on the assumption that
interactions are important. Then the means of the solution approaches would have to be
compared at each one of the 64 treatments. During this analysis, some treatments that
do not give a feasible solutions can be dropped from consideration resulting in a more
balanced design. It is possible that the interactions were not actually important and this
option was selected. In this worst case scenario the maximum damage done is the time

invested in performing the more detailed analysis.
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The second option is to continue on the assumption that interactions are not
important. This makes test of hypothesis 1 much easier as only one more ANOVA run
need to be carried out. But, the penalty for having made the wrong choice in this case is
substantial. For example, based on all means it can be determined that ROP is superior
to other algorithms. This does not mean that ROP out performs all other algorithms
under every treatment. It is possible that the LS algorithm out performs the ROP in a
low utilization uniform demand environment or alternatively it is possible that there
exists no significant difference between the performance of the algorithms at certain
treatments. The possibility of arriving at a result similar to the one just described would
be completely missed if option 2 is selected.

As indicated by the above discussion, the more conservative option 1 is a better
choice. Accordingly, hypothesis 1 is performed over all 64 treatments. This process is

described in the next section.

Test of Hypothesis 1
Since significant interactions are present between the factors a single comparison
across all factor level combinations would not represent the actual reality about the
performance of the algorithms. This can only be found out if the treatment means are
compared using the Tukey procedure.
However, this drastically increases the number of Tukey tests to be performed.
There are 4 demand factor levels and 2 inventory cost factor levels yielding 64 (2*x2°)

treatments. Hence, 64 single factor ANOVA models are run and each time the 10
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solution approaches, listed in Table 4, are compared to determine the best solution for a
given treatment. It is possible that for a given treatment one or more of the algorithms
developed here provide infeasible solutions. In these cases, the comparison of means
must be based on unequal sample sizes. Fortunately, the Tukey procedure used for
comparison of means can accommodate unequal sample sizes. In fact when the sample
sizes are unequal the results obtained from Tukey tests are more conservative (Neter et
al. 1990). This allows for the comparison of those solution approaches that find feasible
solutions for at least 1 of the 10 problems presented to it.

The complete ranking of solution approaches by performance at each ANOVA
run is presented in Appendix D. For each of the 64 treatments, this appendix lists the
mean performance measure for each solution approach, the number of feasible solutions
found and which solution approaches are significantly different from others. The
solution approach(es) that provides significantly lower performance measure than others
at each ANOVA run is presented in Table 10. The solution approach number presented
here are the same those used in Table 4. This table lists, for each treatment, the solution
approach(es) that provide significantly lower performance measures than others. When
more that one solution approach is listed in a treatment 1t is listed in the ascending order
performance measures, i.e., the solution approach listed first is better than other listed
solution approaches but not significantly better. At these treatments, we cannot say that
one approach is better than others listed for that treatment. Formally hypothesis | can be

stated as:
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H,: A solution approach developed here produces significantly fower

schedule costs than base cases

H.: Otherwise
Hypothesis 11 is tested after each ANOVA run, if the solution approach that provides the
significantly lower performance measure is a combination of an algorithm developed here
and a setup estimator then accept H,. Any other result substantiates the acceptance of
H..

From Table 10 it is seen that solution approach 6 (ROP with MIN setup
estimator) provides the lowest cost feasible schedule at each treatment. However, at
some treatments its cost do not substantially deviate from some other methods proposed
here. Also, at all treatments but four, solution approach 6 provides significantly lower
performance measure ratio than any of the base cases. Thus, the hypothesis H, is valid
for 60 out of the 64 treatments. The four treatments that do not support H, have the
following factor combinations:
treatment 1: ¢2, dl, e2, 2, gl, hl;
treatment 2: ¢2, d1, €2, f2, g1, h2;
treatment 3: ¢2, d2, €2, 2, g1, hl;

treatment 4: ¢2, d2, e2, 2, g2, hl.
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The four treatments that substantiate H, are high utilization large problems with high
setup cost factors. At these treatments, solution approach 6 performs better than any of
the current approaches though not significantly better. The following analysis is based
on the cost values listed in Appendix C and performance measure comparisons in
Appendix D for each of the above four treatments. The reason for narrowing
performance gap can be explained as follows:

1. Treatment 1 and treatment 2: These are long schedule horizon problems with
uniform demand type. The average daily demand values used to calculate EMQ lot
sizes 1s a close approximation of the actual demand values. When EMQ is used in
these circumstances, the scheduling cycles tends to balance out with the demand
pattern (Elmagrabhy 1978). This is especially true when EMQ is used with MIN
setup estimator (approach 8) as this tends to produce smaller lots resulting in shorter
cycles. Further, at these particular treatments the penalty for backlogging is low, and
this reduces the cost for deviating from customer requirements. The corrections for
capacity constraints using the “overload penalty” has a significant effect in these
demand patterns. This is especially true for the items that have lower average cost
per unit as defined in chapter IV (these tend to be scheduled later when most the
earlier items have cornered substantial amounts of the available capacity). For this
reason, optimal solutions for the single item problems are drastically affected by the
“overload penalty”. Furthermore, due to the tight capacity considerations the
infeasibility elimination part of the heuristic can find feasible solutions only with

substantial increase in costs incurred. This explains the narrowed gap in the quality
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of solutions provided by approaches 6 and 8. However, it must be emphasized that
the schedules generated by approach 6 are feasible whereas those generated by
approach 8 are not necessarily so.

2. Treatment 3 and treatment 4: The reason for the statistical indifference at these
treatments lies in calculation of performance measures. Once again, performance
measure is the ratio of the minimum cost schedule found for a problem divided into
the cost of schedule determined by the approach in question. However, these
performance measures are skewed when none of the approaches proposed here is
able to find a feasible solution. At treatment 3 there are 4 such problem instances
and at treatment 4 there are 3 such instances. For these problem instances, the
performance measure for either approach 7 or 8 equals | because they provide the
lowest cost schedule amongst the base cases (remember, only feasible solutions
amongst the algorithms proposed here are considered for statistical comparison).
Therefore, at these treatments the repetitions used for Tukey procedure is
unbalanced, with ten repetitions for the base cases and 6 repetitions at treatment 3
and 7 repetitions at treatment 4 for approach 6. For solution approaches 7 and 8,
this leads to 4 performance measures of “1” at treatment 3 and 3 such values in
treatment 4. These values reduce the statistical difference between the means of the
approaches. However, when approach 6 is able to find feasible solutions, these
solutions out perform those found by approaches 7 and 8, by at least, a factor of 2.

For this reason, when only the problem instances for which approach 6 found a
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feasible solution are compared the difference between the procedures becomes
significant.

From the analysis thus far, it can be seen that solution approach 6 is superior to
the other approaches tested here. In an experiment of the size performed here, several
inferences can be drawn about the general performance of the approaches that do not
directly relate to either of the hypotheses. These inferences are not statistically tested
but are based on rough cut analysis of the experimental and statistical results. These

general trends in the performance of the solution approaches are discussed below.

Other Results
1. The above comparisons are made without testing for the feasibility of EMQ and NL
algorithms. Since feasibility requirements merely increase the cost of schedules, this

arrangement gives a fair shake to the traditional algorithms.

2. The LS, RA, and ROP algorithms perform better with MIN setup estimator than
with the MAX setup estimator. This indicates that a conservative approach in
estimating the potential setup cost savings is preferable. Also, the MIN estimator
under estimates the setup time requirements and this encourages greater mobility
when the lots are shifted around to achieve feasibility.

3. Insmall problem sizes with lumpy demand environment LS and RA based

approaches provide good solutions that are mostly statistically indifferent from ROP
based approaches. This is true in both low utilization and high utilization rates.

However, in large problem environments with lumpy demand there is a significant
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difference in performance under low utilization and high utilization rates. In such
problems, when the LS and RA based approaches are able to find feasible solutions
they tend to be as good as ROP approach. But, in large high utilization
environments they are less likely to find feasible solutions.

4. Between two problems with the same capacity utilization the one with the greater
number of products is more difficult to solve. This is due to the non-negligible setup
times required for switching between products. This difference is greater in uniform

demand environments, where greater number of setups are generally required.

Summary

In this chapter, the results of the experiments have been analyzed. The ability of
the algorithms proposed to provide feasible solutions was analyzed. Results indicate that
a “overload penalty” between successive solutions to the single item lot sizing problem is
a far superior approach compared to other algorithms tested here. Especially, when the
ROP algorithm is used with MIN setup estimator (solution approach 6), it fails to find a
feasible solution to only 1.6% of the 640 problems solved using the approach.

An ANOVA test for the significance of interactions between the factors indicated
that interactions are significant. The Tukey procedure was used to compare the
performance of the approaches at each treatment defined by these interactions. Once
again, approach 6 performed better than other approaches tested at all treatments. In 28

of the 64 treatments approach 6 was significantly better than other approaches and in 60
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out of the 64 treatments the approaches proposed in this research performed significantly
better than the base cases.

So far the methodology, experimentation and analysis of the results of the
experimentation have been described. In the next chapter, conclusions that can be drawn
from this research study are presented, the significant contributions are highlighted and

directions for future research are discussed.
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CHAPTER VII

CONCLUSIONS, CONTRIBUTIONS AND FUTURE RESEARCH

This research was a significant undertaking in the area of scheduling in a dynamic
demand environment. This study has explored the use of information that already exists
in a manufacturing enterprise to develop better, less expensive, schedules. The
implications of this study, in terms of major conclusions, contributions, and directions for
future research are discussed in this chapter. Definite conclusions can be drawn from the
vast array of problems which were addressed here. This research was built upon results
obtained by previous researchers and has further extended the knowledge in the area of
dynamic lot sizing and scheduling. Because of the complexity of the problem, research
in the area of lot sizing and scheduling has been on going for several decades. Potential
cost savings ensure that it is likely to be on going for several decades into the future. In
the next section, conclusions that can be drawn from the analysis of results in chapter VI

are discussed.

Conclusions
The problem of determining schedules, including lot sizes, sequence and timing,
in a dynamic demand environment in the presence of sequence dependent setups, finite
capacity, setup carryover and variable backlogging has been successfully addressed in
this research. Three different heuristics, each used with two different setup cost
estimators, for solving the problem have been proposed, studied and evaluated. These

heuristics are compared with two base cases, NL and EMQ. In all, ten solution
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approaches have been extensively tested and their performance evaluated over a wide
variety of problem instances duplicating real world problem conditions. Results show
that the regeneration algorithm with “overload penalty” (ROP) using minimum setup
estimating procedure (MIN) is most adept in finding feasible solutions.

Statistical analysis of the schedule costs generated by the algorithms indicates
that the demand environment and the inventory related costs in the production system
significantly affect the performance of the solution approaches. However, further
analysis shows that for a majority of factor combinations the ROP heuristic used in
combination with MIN setup estimator significantly out performs all other solution
approaches tested. In treatments at which the solution approach is not significantly
better than other approaches it performs at least as well as any other solution approach.

Each of the 10 solution approaches tried here is tested over the same set of 640
problem instances. Table 11 shows:

1. the number of times each solution approach found the minimum cost feasible
schedule over all the approaches tested,

2. the worst case performance of the algorithm, expressed using the same performance
measure used in the statistical analysis, and

the average performance measure for the algorithm.

w

The table clearly indicates that solution approach 6 (combination of ROP and MIN) is
superior to all others. On the average the cost of schedules generated by EMQ is at least
5.8 times and those generated by no lot size method is 9.5 times the cost of schedules

generated using solution approach 6. Finally, this research shows that with intelligent
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application of operations research techniques good solutions can be obtained to even the

most challenging large scheduling problems.

Solution Number of Minimum Worst Case Average Performance

Approach Cost Solutions Performance
1 3 4.85 2.07
2 3 421 1.90
3 0 8.57 2.66
4 1 4.21 1.85
5 2 1143 2.54
6 623 1.21 1.00
7 4 19.44 5.82
8 9 47.89 7.80
9 0 40.92 9.55
10 0 40.92 9.55

Note: Solution approaches are defined in Table 4

Table 11. Relative performance of solution approaches

Contributions
In this study, in addition to development, implementation and testing of heuristic
solutions to a complex dynamic lot sizing and scheduling problem, several other
contributions have been made to the literature in the area of production scheduling.

These contributions are listed below.

1. Formulation of the Problem: In this study, a new formulation is presented for a real
world scheduling problem. This extends the formulation introduced by
Gopalakrisknan et al (1995). This formulation can potentially be used by other
operations research practitioners to determine alternate approaches to solve the

problem.
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2. Solution Improvement Techniques: Two extensions to the Wagner-Whitin (Wagner
and Whitin 1958) extreme point property have been proposed and proved. These
extensions allow the application of the property when backlogging is allowed. In this
study, they have been incorporated into each of the algorithms proposed here and are
applied to improve the quality of the solutions determined by the algorithms.

Optimal Sequencing Technique: In this research, a new procedure, a combination of

W

dynamic programming and a heuristic solution to the TSP problem, has been tound
to determine the optimal sequence for production once the production lots within
each period is determined. This technique provides significant cost reductions when
used in a sequence dependent setup environment. At a practical level, this method
provides an optimal solution to most real world sequencing problems. The
sequencing technique can be used in other sequence dependent setup environments.
For example, it can be used as part of algorithms that assume sequence dependent
setup costs, zero setup times and no backlogging, a problem studied by Fleischmann
(1994).

4. "Overload penalty": In this study "overload penalty" plays a crucial role in
generating not only feasible schedules but also superior quality schedules. "Overload
penalty" is based on the marginal cost of eliminating infeasibility. This simple yet
powerful concept can be transformed into other multi-item environments. This
allows the solution approaches to take advantage of optimal solutions to simpler
problems. This elegant approach can be used in place of the mathematically daunting

Lagrangean relaxation approach.
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5. Problem Size: This study is different from previous studies in that it makes very few
assumptions about the nature of demand and inventory related costs in the real world
production system. By solving several variations of large problems (15 products 30
periods), this research has shown that it is not necessary to make assumptions that
debilitate the quality of results when attempting to develop solutions large real world

scheduling problems.

Directions for Future Research

The problem of dynamic lot sizing and scheduling is NP hard hence, it is unlikely
that optimal solutions for complex problems in this area can be found within reasonable
computational efforts. For this reason, heuristic approaches have to be developed to
solve scheduling problems in real world production systems. In this research, a set of
approaches have been proposed to generate schedules in the presence of several
complicating factors. However, there exists a possibility for improving the quality of
solutions. The potential savings in production costs resulting from efficient schedules
justifies further research in this area. Research work here can be extended in the
following directions:

1. Setup estimator: It has been reported that MIN and MAX provide the best estimates
of setup time and cost (Dilts and Ramsing 1989). In this research, both setup time
and setup costs are estimated using only one of these estimators at a time. However,
it may be possible to obtain better schedules by using the MAX estimator to estimate

setup costs and MIN estimator to estimate setup time. The reasoning being that
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MAX cost estimator encourages elimination of greater number of lots to reduce
setups and the MIN time estimator will increase the mobility of the lots when
infeasibility eliminating routine tries to shift production to eliminate infeasibility.

2. “Overload penalty”: In this study, only one type of “overload penalty” is used. The
penalty for exceeding capacity is proportional to the square of the difference between
required capacity and available capacity. The function used to determine the
“overload penalty” affects the schedules generated. When the “overload penalty” is
linear, it may not have a significant effect on the overloading of periods resulting in
greater number of infeasible solutions. On the other hand, a higher degree
polynomial may negatively affect the quality of the solution in low capacity utilization
environments. More work is needed to determine the exact relationship between the

"overload penalty" and capacity overloading.

Summary

A comprehensive study has been performed on a class of real world multi-item
dynamic lot sizing and scheduling problem. The problem formulation accounts for all
possible significant factors that affect the quality of schedules. These are: known
dynamic demand, multiple items, capacity constraint, sequence dependent setup cost and
setup time, finite variable backlogging, and setup carryover. A review of current
research showed that solutions, to the scheduling problem of the complexity attempted
here, has not been attempted yet. Yet the benefit accruing from the solution

methodology is very real. It was statistically proven that the regeneration algorithm with
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"overload penalty" is the most effective solution approach to this problem. On an
average the cost of schedules generated by EMQ computations was at least 5.8 times the
cost of feasible schedules generated by the regeneration algorithm with "overload

penalty".
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NOMENCLATURE
setup cost per production lot of 1, independent of sequence ($/setup)
penalty cost for backlogging per unit per period for i ($/hour/day)
capacity available in a period t (hour)
cost of the solution provided by the TSP algorithm ($)
cost of producing a lot in period t' to meet all demand between the regeneration

points of t and k (3)

demand for product i in day t (hour)

estimated savings from moving product i from t to k ()

minimum cost incurred between regeneration points t and T ($)

product that will be produced first by state k on day t
inventory holding cost per unit per period for i ($/hour/day)
inventory/backlogging cost for 1 (§)

itemindex (i=1,2,... . N)

inventory of item 1 at the end of period t (hour)
temindex(j=1,2,....N)

number of products currently included in the TSP sequence

product that will be produced last by state k on day t

number of products in the system
number of products scheduled for production on day t

product sequenced kth on day t
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pi production rate for i per period (unit/period) where p; > ;

PC,k lowest possible setup cost from state k in period t to T (3)
Qe slack capacity available in period t, a negative value indicates overloading (hour)

Qi lot size for i resulting from EOQ and EMQ computations (unit/cycle)

7
ZCI’/,

ri demand rate for i per period (unit/period) ; 7; = I:T
Sij setup time to switch from product i to product j (hour)
5; estimated setup time (hour)

Sij cost to switch from product i to product j (§)

S estimated setup cost ($)

SC, average cost per unit time per setup ($/period/setup)

t period index (t=1,2,....,T)
tg target period to move production to achieve feasibility

TC  the total cost of a feasible schedule ($)

TSP,k cost returned by the TSP algorithm for state k on day t ($)

Ui(t) marginal cost coefficient for i if demand in period t is produced in period 1
($/time’/unit)

Vi the average cost per unit for i estimated using EOQ formula ($/unit)

Wit 1 if i is produced in period t

0 otherwise

Xit production lot scheduled for i in period t (hour)
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1 if product j is produced immediately after product i in period t

0 otherwise
maximum number of periods of backlogging allowed (day)

1 if product i is produced last in period t
0 otherwise

set of items for which lot sizes have already been determined
change in inventory/backlogging cost associated with product p ($)

the product occupying the ith position in the TSP sequence

cost of including product i in the current TSP sequence at position k ($)
}/,-k = (S¢k—1i +S8ig, ) wherek =2, I+]

quantity to be moved to remove infeasibility (hour)

1 if product i is produced first in period t
0 otherwise

product selected for moving to remove infeasibility
set of items that have production lots > 0 in period t, i.e. / € [, iff x;, >0

cost of kth sequence when solving TSP by complete enumeration;

k=1,2,. ..., %P (3)

I
ye . . . 1
utilization ratio fori= —

Pi
state in t+1 that gives the lowest cost solution for state k in period t to T (3)

cycle time for item i (period)

idle capacity in period t (hour)
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sequence returned by the TSP algorithm for state k on day t
set of nodes not yet included in TSP sequence

overload penalty (hours®)

cost of moving 1 unit of the selected product to target period ($/hour)
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Consider the 4 product 5 period problem with demand matrix given in Table A.1

and setup time matrix in Table A.2. Demand as well as setup time is expressed in hours

of production.

Period
Product ] 2 3 4 5
A 3 0 0 2 0
B 0 6 0 | 4
C 2 0 3 0 0
D 0 0 5 0 2
Table A.1 Demand Matrix
To Product

From A B C D

A 0 1 1 2

B 2 0 I 2

C 1 3 0 1

D 1 1 2 0

Table A.2 Setup Matrix

In addition capacity is 8 hours per day C, = 8 V t; Setup cost factor = 3, i.e. §;; =

3xs;; backlogging limit o = 2; hy=1 V i; b; =2 V i. The problem will be solved using the

minimum setup estimator (MIN) to convert sequence dependent setup to sequence

independent setup.

No Lot Sizing
In this method all the requirements over the scheduling horizon is produced in

one lot. Lot size for items are obtained by adding up their demand over the entire
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horizon. For example the lot size for product A is 3+2 = 5. Similarly, lot size for other
items would be 11, 5 and 7 for items B, C and D respectively. The sequencing problem
here is simply to determine the sequence that provides the lowest sum of setup costs.
From inspection of the setup time matrix the optimal sequence A—>B—>C—D is
determined, with a total setup time of 3 and a setup cost of 9 (no setup time is levied for
product A as per convention defined in chapter I). Taking capacity considerations into
account, production is scheduled as shown in Table A.3. Table A.4 indicates the number

of units in inventory/backlogged at the end of the period.

Period
Product 1 2 3 4 5
A 5 0 0 0 0
B 2 8 ] 0 0
C 0 0 5 0 0
D 0 0 0 7 0

Table A.3 No Lot Size Schedule

Period
Product 1 2 3 4 3
A 2 2 2 0 0
B 2 4 5 4 0
C -2 -2 0 0 0
D 0 0 -5 2 0

Table A.4 No Lot Size Inventory/Backlogging

The total inventory cost is obtained by adding up all the positive values in Table
A.4 and multiplying it by holding cost factor (h; = 1). Similarly, backlogging cost is

obtained by adding up all the negative values in Table A.4 and multiplying by
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backlogging cost factor (b; = 2). Therefore, the inventory/backlog cost is 23x1 + 92 =

41. There are only three setups performed with total setup time of 3 hours. Using setup
cost per hour factor of 3 we get a total setup cost of 9. Therefore the total cost of the

schedule is 9 + 41 = 50.

EMQ Calculations
The MIN setup estimator is used to estimate the setup time s, =min (2, 1, 1) =
1; similarly the setup time estimates for other products can be obtained; sy = 1; s¢= | and
sp = 1. Using the setup cost factor (f=3) the estimates of setup costs can be calculated

Sa=3*1 = 3; similarly Sy =3; S¢=3; S;; = 3. The average demand values per period

2

+

3

(r;) is calculated next: ra = = 1;similarly g =2.2;rc=1: = 1.4, p;=8toralli

5

Therefore, pa = 1/8; pg = 11/40; pc = 1/8; pp = 7/40. Now we can calculate the cycle

. . * 25,‘ .
time for each product using 7; = |—————_ This yields
hiri(1-pi)
* 2x3 o * %
Ty = =2.619; similarly 75 =194, ~=2.619:
Ix1x(1- é—)

% #
Tp = 2.279 and the lot sizes are calculated using 7% T; ; for product A lot size =

1x2.619 = 2.619 which is rounded off to 3; similarly the lot sizes for other products can
be calculated as 4, 3, and 3 respectively for items B, C, and D.
For products A and C only 2 lots are required to meet their cumulative demand.

Whereas, products B and D need 3 lots. Since the setup time to switch from D to A is
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only 1 hour the optimal sequence remains the same. Making the required changes as
stated in chapter IV we get the schedule shown in Table A.5 and Inventory/Backlogging

situation shown in Table A.6.

Period
Product I 2 3 4 5
A 3 0 2 0 0
B 4 0 4 0 3
C 0 3 0 2 0
D 0 3 0 3 3
Table A.5 EMQ Schedule
Pericd
Product 1 2 3 4 3
A 0 0 2 0 0
B 4 -2 2 ] 0
C -2 1 -2 0 0
D 0 3 -2 ] 0

Table A.6 EMQ Inventory/Backlogging

The complete sequence of production is A>B—-C—>D—->A—>B—-»C—-D—->B-D.

This results in a total setup cost of 30. The total inventory/backlogging cost is 141 +

842 = 30, yielding a total cost of 30 + 31 = 61.

A Lot Shifting Algorithm (LS)
The sequence independent setup costs and times are once again calculated using

MIN estimator as Sa =3;Sp=3;Sc=3;8Sp =3 andsy=1;s5=l;50=1;5p= |
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S o006 0 1 4]

Step 1 The algorithm initially sets schedule = demand = | , 0 3 0 0l In this
LO 0 5 0 QJ

matrix each column represents a day and each row represents a product. For example

according to the above schedule the production lot for product B on day 4 is 1.

Step 2 In this step the schedule matrix is sequenced. Here there are 5 stages
corresponding to each day in the horizon. Number of states in each stage is equal to the
factorial of number non zero lots produced in that state. Stages 1, 3, 4 and 5 have 2
states each and stage 2 has 1 state. For example the 2 possible states for stage 1 are
(A,C) and (C,A). Two dummy stages (stage 6 and stage 0) represent the transition from
this scheduling horizon to the adjacent horizons.

The dynamic programming algorithm starts by first calculating the optimal setup
cost sequence within each state. When there are several non-zero products in a period
then a TSP algorithm is used to calculate the best sequence. However, in this situation
this is a trivial problem as the maximum number of products produced on any day is 2.
In this case the cost of sequence within each state is merely equal to the setup cost
between the first product and the last product in the state. In stage 2 there is only one
non zero lot (product B), in which case the cost of the state is zero.

The dynamic programming algorithm starts in stage 5 and goes back up to stage
0. For each state in a stage the algorithm determines the state in the next stage that
produces the lowest cost sequence from that stage to stage 5 (equation 64). These

calculations are shown in table A.7. The state in the next stage that produces the lowest
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cost to stage 5 is shown in italics. Costs shown in the table are sum of cost of sequence

within the state, cost of switching from the last product in the state to the first product in

the state selected in next stage, and cost of going from state selected in next stage to

stage 5. For example the cost of going from state (C,D) in stage 3 to stage 5 when the

state in the next stage is (A,B) is the sum of:
1. cost of sequence (CD) =3

2. cost of changing from product D in stage 3 to A in stage 4 = 3, and

b

3. cost from state (A,B) in stage 4 to stage 5=9,

resulting in a total cost of 15.

Stage State State in next Stage Cost
6 (0) - 0
5 (B,D) (0) 6

(D,B) 0) 3

4 (A.B) (B,) Y
(D,B) 12

(B,A) (B,D) /5
(D,B) 15
3 (C,D) (A,B) 13
(B,A) 21
(D,0) (A,B) /8
(B,A) 30
2 (B) (C.D) 18
(D,C) 24
1 (A,C) (B) 30
(C,A) (B) 24
0 0) (A,C) 30
(CA) 24
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The algorithm then traces the optimal sequence starting from stage 0, at each
stage selecting the state in the next stage that provides the lowest cost to stage 6
(equations 65 and 66). In relation to Table A.7 the optimal sequence is determined as

follows:

at stage O select state (C,A) in stage | as it has a lower cost than state (A,C)

at stage 1 the only option in stage 2 is state B

e at stage 2 the best state in the next stage is state (C,D)

for state (C,D) in stage 3 the best state in stage 4 is (A,B)

for state (A,B) in stage 4 the best state in stage 5 is (B,D)
The sequence of production in each stage and across the scheduling horizon can be

. . (C B C A B ) )
represented using the matrix A D B D) In this matrix the columns

represent each stage (period) and the rows represent the sequence of production starting
from the first row. Capacity availability/overloading for each period is calculated next.
For example consider period 3. In this period capacity is required to switch production
from product B in period 2 to product C, produce 3 units of product C, then switch to
product D and produce 5 units of product D. The total capacity required in this period
thenis 1 +3 + 1+ 5=10. Since the capacity available in each period is 8 we have an
overload of 2 units. Overload is represented with a negative sign in the capacity
availability matrix. Similar calculations for the other periods yields a capacity matrix of

(2, 1, -2, 3, 0) for the schedule and sequence matrix listed above.
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Step 3 In this step entire lots that can be moved to save setup costs are considered.
Taking capacity availabilities into account entire lots that can be considered for moving
are product A from period 4 to period 1 and product B from period 4 to period 2. The
first move costs 6 units to carry additional inventory from period 1 to period 4 and saves
a setup for product A estimated to be 3 units (S, =3). Therefore the move costs more
than it saves and is not selected. Whereas the second move costs 2 and potentially saves

3 units, so this move is made. The schedule is recomputed, and the new schedule is

(3 00 2 0)
{ 0 7 0 0 4 { The sequence of production and capacity availabilities are
2 0 3 0 0}
{O 0 50 2J

C B C A B
D D

recalculated as before, the sequence is [ J and capacities matrix 1s

(2,0,-2,5,-1). No more lots can be moved around to save setup.

Step 4 Overloading can be eliminated in period 5 by moving setup item B to period 4
(equation 72 is satisfied). The sequences and lot sizes remain the same but the new
capacity matrix is (2, 0, -2, 4, 0) (using equations 73 and 74). Now the overloading in
period 3 has to be eliminated.

Both items C and D have to be considered. First the algorithm considers item C.
The estimated setup time is 1 hours (sc=1). Two options are available.
1. Shift some production to period 1 (equation 87 is satisfied). The number of units to

be shifted is determined by equation (88), in this case v =min(2. 3, 2). The cost of
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this move per unit overload eliminated is calculated using equation (89). the change

in the inventory/backlogging cost is calculated using equations (69, 70 and 71).

2. Another alternative is to move production into period 4. Equation (83) is satisfied.
The entire lot for product C can be moved (3 units). Since, production is shifted
forward the feasibility of this move has to be evaluated. Equation (98) is satisfied
(t=3, t* = 4, m=3). Therefore, the move is a feasible move. Once again the cost per

unit shifted is calculated using equation (84). Plugging in all the numbers, we get

The above procedure is repeated for product D. Equation (92) is satisfied by
both periods 1 and 4. Let us first consider shifting production to period 1. In this case v
can be calculated form equation (93), v =min(2, 1,5) = 1. The cost per unit of

3+2
infeasibility eliminated is calculated from equation (94), z = = 5 Now let us

consider shifting production to period 4. Once again the feasibility of the move is
evaluated. Using equation (93) the size of the lot to be shifted is calculated v = min(2, 3,

5) =2. The cost of this move per unit of overload eliminated is

CAH+Sc 443
==

= 3.5. Obviously the lowest cost option is to move two units of

[

product C from period 3 to period 1 or 3 units from period 3 to period 4. Shifting 2

units to period 1 is selected.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(300 2 0)

The new schedule is } 0700 i the sequence remains the same and is
4 01 00
LO 0 5 0 2 J

(CBCAB
A D D

j the new capacities are (0, 0, 0, 4, 0). Hence the infeasibility

has been eliminated.
Step 5. The quality of the solution cannot be further enhanced as no conditions required
for optimality have been violated.

Now the inventory/backlogging matrix for the above schedule is calculated

(00 0 0 0)
f01100||
220 0 0f
LoooooJ

The total setup cost is calculated from the over all sequence of production
C—>A—->B—C—->D—>A—B-—D. The total setup time for this sequence is 8, and the total
cost is 24 (8*3). Once again the total inventory/backlogging cost is 6 (from

inventory/backlogging matrix). Therefore, total cost of the schedule is 24+6 = 30.

A Regeneration Algorithm (RA)
Once again Sy =3;S3=3;Sc=3;Sp =3 andsy=1; 8= 1;8c= 1, sp = 1.
Step 1. Solve the single item problem for each item using the regeneration point
technique described in chapter III. The algorithm first considers item A with a demand

pattern (3 0 0 2 0). The best period for production between any two regeneration points
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is calculated using equation (57). For example given a regeneration point at period 0,

Table A.8 shows the cost of production in each period for the next regeneration point.

The values in Table A.8 are equal to C(’)'k :

For example, consider the first regeneration point in period 0 and the next
regeneration point in period 3. There are three possible periods (1, 2, 3) to produce the
lot to meet the cumulative demand in this period (cumulative demand = 3). Iflot is
produced in period 1, then inventory at the end of this period becomes O (production =3
units and demand = 3 units). This makes period 1 a regeneration point. This is not a
feasible solution because it violates that the rule that the next regeneration point
following period 0 is period 3. Next consider production in period 2. The setup cost for
the period is 3 and the backlogging cost is 6. Therefore the total cost of production in

period 2 is 9. Similarly the total cost of production in period 3 i1s 12 + 3 = 15.

Period of Production

Next Regeneration Period 1 2 3 4 5
1 3 - - - -
2 x> 9 - - -
3 X 9 15 - -
4 9 13 17 X -
5 X X X X X

1 - indicates periods that are not within regeneration points O and the next regencration point
2 x indicates infeasible periods as producing in these periods violates regeneration point theorem

Table A.8 Cost coefficients for regeneration in period 0

Similar cost coefficients are generated for all other possible regeneration points.

The period that provides the lowest cost period of production between two successive

regeneration points is saved. Table A.9 shows the lowest cost between two regeneration
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points and period of production to achieve this low cost. The cost coefticients shown in

Table A.9 are ¢y, for all combinations of t and k.

Next regeneration point

lowest cost coefficient period of production
regeneration at pointi 1 2 3 4 5 | 2 3 4 5
0 3 9 9 9 x ] 2 2 1 X
1 o0 X 7T x -2 x 2 X
2 - - 0 5 X - - 3 3 X
3 - - - 3 7 - - - 4 5
4 - - - - 0 - - - - 5

1 - indicates periods that are not within regencration points considered
2 x indicates infeasible periods as producing in these periods violates regencration point theorem

Table A.9 Cost coefficients and period of production between all regeneration points

For example consider first regeneration in period 2. Three possibilities exist for
the next regeneration period namely, 3, 4 and 5. Let us consider each one in sequence.
First consider period 3. Cumulative demand in this period is 0. Therefore, the total cost
of production is 0 and the only period in which this 0 production can be scheduled is 3.

Next, consider the second regeneration period 4. The cumulative demand now is
2 (sum of demand in periods 3 and 4). Production of these 2 units can either be
scheduled in period 3 or 4. First consider period 3. The total production cost is 5 (3 for
setup and 2 for inventory). Now consider production in period 4. The inventory at the
end of period 3 in this case is 0. Therefore, production cannot be scheduled in period 4.
So the only option is producing 2 units in period 3 at a cost 5, as shown in Table A.9.

Now consider the second regeneration point in period 5. Once again the

cumulative demand is 2. If production is scheduled in period 3 then inventory at end of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(9]
|93}

period 4 is 0. Hence, this is not a feasible option. Similarly if production is scheduled in
periods 4 or 5 inventory at the end of period 3 is 0, which makes production in these
periods infeasible. Therefore, there is no feasible solution possible for a regeneration
point in period 2 and the next one in period 3.

Once the lowest costs between two regeneration points have been determined the
task is to use dynamic programming to select the best possible pairs of regeneration
periods in each period. This is achieved by recursion starting in period 5. The recursion

works as follows:

2= min (Cy + [ )=Cqs+ f5=0

Ja=min (Cy + fi )= Cys Ve

f3= min (c3p+ fi)=c3a+ f4=3
3<k<5

fo= min (¢op+ fr)=c3+ f3=
2<k<5

Ji=min (cyp+ fr)=cip+ f2=3
1<k<5

fo= min (cor+ fx)=co1+/1=6
0<k<5

where f; is the lowest cost of going from that stage t to the regeneration point in period
5. f,is calculated recursively starting from period 5 using equation (58). For example,
consider stage 3. Given a regeneration period in 3 then there are two options to get to
stage 5. The first option is to directly have the second regeneration point in period 3

with total cost of 7 (c3s +f5). The second option is to have the second regeneration point
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in period 4 and then select the best way to go from period 4 to period 5. The total cost
of this option is 3 (cs4 + f3). Therefore the second option is selected.

Similarly the best path to period 5 is calculated for other periods and is shown
above. The optimal regeneration points are selected by starting from period 0 and
successively determining the next lowest cost regeneration point. From period O the
next lowest cost regeneration period is 1, similarly from 1 the next lowest cost
regeneration period is period 2 and so on. The sequence of regeneration points is the
optimal sequence.

Therefore the best policy will be to have regeneration points at 0, 1, 2,3, 4 and 5
i.e. just producing enough in each period to meet demand in that period. Here the lots
are scheduled in periods 1 and 4, and the lot sizes are 3 and 2 respectively. The total
cost of the schedule is 6. Similarly, the optimal schedules are generated for all products.
At the expense of being succinct only the final optimal schedules are presented for the
other items. For item B there are two optimal schedules (0, 7, 0, 0, 4) or (0, 6, 0, 0,5).
For item C the optimal schedule is (2, 0, 3, 0, 0) and for item D the optimal schedule is

(0,0, 5,0, 2). Hence at the end of the first step the following schedule can be obtained

(3 0 0 2 0)
!070045
20 3 0 0f
Looson

Step 2. The above schedule is exactly same as the one generated at the end of the lot
shifting procedure of the LS algorithm. Therefore the infeasibility elimination procedure

is similar. Hence only the final solution is provided here. The schedule is
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(30 0 2 0)

}O 700 4}and the sequence is [C Boco4 B]onceaoain this
40100 4 b D)

L() 050 2J

approach yields the final schedule cost of 30.

Regeneration Algorithm with “Overload Penalty” (ROP)
Still SA=3;8=3;8c=3;Sp =3 andsa=1;s3=1;5¢c=1;s5p = 1. Also we
knowra=1,m=22;rc=1,1mp= 14.
Step 1. First the sequence in which the regeneration principle is used to generate optimal
solution is determined. The sequence is based on the average cost values (V))

determined for each product using equation (106). For product A we have

2xIygxr V2x3x1
4= \/7 rA A _ =245 similarly Vi = 1.65; Ve = 2.45; and V), =

A 1
2.07. The average cost for items C and A are equal. In such cases the algorithm selects
the product whose average cost value was first generated. Therefore, the order of
scheduling is A, C, D, B.
Step 2. This algorithm is similar to RA algorithm until the 'if condition' in equation (108)
is satisfied. Since the "overload penalty" does not come into play for the first two
products the final results for these products determined earlier are merely repeated here.
The schedule for Ais (3,0, 0, 2, 0)and for Cis (2, 0, 3, 0, 0). Nextitem D is
considered for scheduling. Now the 'if condition' in equation (108) is satisfied and

"overload penalty" comes into play.
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First the capacity requirements in each period is calculated using estimated setup
times. For example in period 1 for A and C together we need total production time of 5
(3+2), the total estimated setup time is 2. Therefore total capacity required for A and C
in period 1 is 7 (5+2). Similar capacity requirements are calculated in other periods and
the capacity requirements in each period is (7, 0, 4, 3, 0). From these values the capacity
available in each period can be computed by subtracting capacity requirements from
capacity available in each period (8). The capacity availability matrix is (1, 8, 4, 5, 8).

With information on capacity availabilities the optimal regeneration periods can
be calculated as before. However, this time around some of the cost coefficients will be
modified by incorporation of "overload penalty". The demand sequence for product D is

(0,0, 5,0, 2). Once again the cost of production in each period for a given pair of

regeneration points is determined. However, now the c,’/: values are computed using
equation (109) to account for "overload penalty”. Table A.10 shows the cost
coefficients with the first regeneration point in period 0.

For example consider the next regeneration in period 5. One option is to
produce in period 1. Cumulative demand is 7 (5+2). Total capacity required to produce
a lot of size 7 is 8 (including an estimated setup time of 1 hour). However, only | hour
of capacity is available in this period. "Overload penalty" is calculated using equation
(109) as 49 (8-1)*. Now the cost coefficient in that period is the sum of "overload
penalty”, setup and inventory cost to carry 5 units from period 1 to period 3. "Overload

penalty" is 49, estimated setup cost is 3, and inventory cost is 10 (5x2). The cost
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coefficient is 70 (49+3+18). Production in other periods is not feasible because

inventory in period 1 is O with these options.

157

Period of Production

Next Regeneration Period 1 2 3 4 5
1 0 - - - -
2 X X - - -
3 38 X X - -
4 X X X X -
5 70 X X X X

1 - indicates periods that are not within regencration points 0 and the next regeneration point

2 x indicates infeasible periods as producing in these periods violates regencration poirnit theorem

Table A.10 Cost coefficient for regeneration in period O with "overload penalty"

Similar cost values are generated for all other possible regeneration points. The

period that provides the lowest cost period of production between two successive

regeneration points is saved. Table A.11 shows the lowest cost between two

regeneration points and period of production to achieve this low cost. The values in

Table A.11 is equal to cy for all combinations of t and k. These computations are similar

to one used in RA except for the incorporation of the "overload penalty".

Next regeneration point

lowest cost coefficient period of production
regeneration at pointi 1 2 3 4 5 ] 2 3 4 5
0 0 x 38 x 70 1 X ] X ]
1 0 8 x 14 -2 2 x 2
2 - - 7 14 23 - - 3 4 3
3 - - - 0 5 - - - 4 4
4 - - - - 3 - - - - 5

1 - indicates periods that are not within regeneration points considered

2 x indicates infeasible periods as producing in these periods violates regencration point theorem

Table A.11 Cost coefficients and period of production between all regeneration points
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The recursion would work as follows:

f5=0

Ja= min (cap + f)=ca5+ fs=3
4<k<5

= min (c3p + =041 J4=
/3 3<kss( 3k + k) =34+ 14
= min (¢} + =03+ f3=10
2 2<kss( 2+ 1) =3+ 13
fi= min (g +fr)=ca+f2=10
1<k<5
fo= min (cop + fi)=cor+ f1=10
O<k<S

The optimal solution is to have regeneration points at (0, I, 2, 3, 4, 5). Once
again the solution is to produce only in periods in which demand exists i.e., produce 5
units in period 3 and 2 units in period 5. The schedule is (0, 0, 5, 0, 2). Now item B is
scheduled, taking into account the schedules of previous three items. Once again the

regeneration points are determined using procedure described above. The schedule for

item Bis (0, 6, 0, 0, ).

(300 2 0)
{ 0 6 0 0 5 {
Step 3. The combined schedule of the four items are 50 3 0 0f The optimal
ya J
LO 0 5 0 2 J

[c B C A4 DJ
1 itl ities (2, 1, -2, 35, -2).
sequence 1s A D B with capacities (2, 1, -2, 5, -2)

Step 4. The overloading in period 5 can be overcome by moving the setup for the switch

between product A in period 4 and product D in period 5 to period 4. The new
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capacities are (2, 1, -2, 3, 0). Overloading in period 3 can be eliminated using methods

described earlier. Here only the final solution is provided. The final schedule is

(3 0
o 7
L4 0
0 0
cost is 30.

—_ O O

W

S O O N

0)
i

)

cC B C A D

with sequence shown as . , and the total
1 (A D B)
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APPENDIX B

DEMAND AND SETUP DATA SETS
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Table B.1 Demand data set 1: Small problem size, smooth demand, low utilization
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Table B.1 (Continued)

Period

10

9

1

Product
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Table B.2 Demand data set 2;: Small problem size, smooth demand, high utilization
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Table B.2 (Continued)
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Table B.3 Demand data set 3: Small problem size, lumpy demand, low utilization
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Table B.3 (Continued)

Period
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Table B.4 Demand data set 4: Small problem size, lumpy demand. high utilization
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Table B.4 (Continucd)
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26 27 28 29 30
2 1
0 0
2 0

24 25
0

0
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22 23

19 20 21
1
2
0

, smooth demand, low utilization
17 18
1 I
0 1
1 2
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6

0

1

1
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Large problem s
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2
0
|
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2
0
0

Table B.5 Demand data set 5
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Table B.5 (Continued)
1
1
1
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1
0
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1
2
3
4
5
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Table B.6 (Continued)
1
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Table B.9 Setup matrix used for small size problems

To Product
From Product 0 1 2 3 4 3 6
0 0 0 0 0 0 0 0
1 0 0 3 5 4 2 2
2 0 6 0 1 4 1 1
3 0 2 6 0 1 1 6
4 0 6 4 4 0 4 I
5 0 3 5 6 4 0 4
6 0 ] 4 6 3 3 0
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Table B.10 Setup matrix for large size problems
To Product
6
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APPENDIX C

OUTPUT GENERATED BY ALGORITHMS
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Table C.1 Experimental results

Factors Replication

A B CDEF G H 1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 221 229 194 219 178 199 199 188 202 210
1 1 1 1 1 1 1 2 208 209 191 215 178 210 191 173 225 186
1 1.1 1 1 1 2 1 196 223 177 224 178 197 214 220 191 203
1 11 1 1 1 2 2 196 199 177 164 178 197 220 220 191 203
I 11 1 1 2 1 1 442 481 498 540 502 465 482 545 469 432
1 1 1 1 1 2 1 2 506 437 463 523 542 493 518 489 486 540
1 1 1 1 1 2 2 1 529 464 453 545 579 507 493 511 512 466
1 1 1 1 1 2 2 2 550 470 468 579 615 564 529 475 531 514
1 1 1 1 2 1 1 1 INF INF INF INF INF INF INF INF INF INF
1 1 1 1 2 1 1 2 INF INF INF INF INF INF INF INF INF INF
1 1 1 1 2 1 2 1 INF INF INF INF INF INF INF INF INF INF
1 1 1 1 2 1 2 2 INF INF INF INF INF INF INF INF INF INF
1t 1 1 2 2 1 1 INF INF INF INF INF INF INF INF INF INF
i1 1r 1 2 2 1 2 INF INF INF INF INF INF INF INF INF INF
1 1 1 1 2 2 2 1 INF INF INF INF INF INF INF INF INF INF
1 1 11 2 2 2 2 INF INF INF INF INF INF INF INF INF INF
1 1 1t 2 1 1 1 1 139 139 120 112 116 122 122 105 151 109
11 1 2 1 1 1 2 114 119 120 112 116 114 122 107 151 113
1 1 1 2 1 1 2 1 116 119 104 Il flo 17 114 105 129 107
It 1 2 1 1 2 2 116 119 104 111 116 117 114 105 129 110
11 1 2 1 2 1 1 375 347 342 344 364 445 342 347 398 380
P11 2 1 2 1 2 383 432 292 367 428 431 388 328 374 430
| S A A | 436 379 334 334 364 361 354 347 410 389
1 1 1r 2 1 2 2 2 433 357 334 334 364 440 354 33 410 369
P12 2 1 11 INF 131 98 98 105 106 128 INF 97 93

1 1 1 2 2 1 1 2 100 131 98 98 105 106 128 114 97 93

112 2 12 ] INF 155 98 124 111 109 128 INF 109 93

11 1 2 2 1 2 2 109 155 98 124 111 109 128 126 109 93

I 2 2 2 1 1 INF 464 368 409 345 INF 470 INF 341 333
P r 2 2 2 1 2 404 469 564 432 363 446 470 440 394 361
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Table C.1 (Continued)

Factors Replication
A B CDEF G H 1 2 3 4 5 6 7 8 9 10
I 1 2 2 2 2 1 1 INF INF INF INF INF INF INF INF INF INF
11 2 2 2 2 1 2 INF INF INF INF INF INF INF INF INF INF
11 2 2 2 2 2 1 INF INF INF INF INF INF INF INF INF INF
P12 2 2 2 2 2 INF INF INF INF INF INF INF INF INF INF
1 2 1 1 1 1 1 1 158 158 166 169 160 166 164 170 166 159
I 2 1 1 1 1 1 2 158 158 170 163 160 166 164 160 166 159
b2 1 1 1 1 2 1 158 158 166 164 160 160 164 160 166 159
12 1 1 1 1 2 2 158 158 166 164 160 160 164 160 166 159
1 2 1 1 1 2 1 1 553 511 497 479 536 596 525 498 591 509
12 1 1t 1 2 1 2 549 512 470 484 504 547 534 530 523 522
r 2 1 1 1 2 2 1 484 547 498 554 527 507 521 540 363 551
12 1 1 1 2 2 2 484 543 498 554 527 507 521 539 563 551
12 1 1 2 1 1 1 INF INF INF INF INF INF INF INF INF INF
12 1 1 2 1 1 2 INF INF INF INF INF INF INF INF INF INF
P2 1 1 2 1 2 1 INF INF INF INF INF INF INF INF INF INF
12 1 1 2 1 2 2 INF INF INF INF INF INF INF INF INF INF
P2 1 1 2 2 1 1 INF INF INF INF INF INF INF INF INF INF
12 1 1 2 2 1 2 INF INF INF INF INF INF INF INF INF INF
12 1 1 2 2 2 1 INF INF INF INF INF INF INF INF INF INF
r2 1 1 2 2 2 2 INF INF INF INF INF INF INF INF INF INF
P2 1 2 1 1 1 1 93 92 90 86 111 106 94 98 112 94
b2 12 1t 11 2 93 92 90 86 B8 106 94 98 12 94
12 1 2 1 1 2 1 93 92 90 86 111 102 94 98 12 94
201 2 1 1 2 2 93 92 90 86 1 102 94 98 12 94
210 2 17 2 1 1 375 377 342 345 398 406 388 343 161 357
2 1 2 1 2 1 2 401 377 342 343 398 406 388 343 161 393
12 1 2 1 2 2 1 401 377 338 345 398 409 340 343 473 357
2 1 2 1 2 2 2 401 377 338 345 398 409 340 343 473 376
2 1 2 2 1 1 1 101 143 88 98 88 110 130 INF 97 78
12 1 2 2 1 1 2 101 143 88 98 88 110 164 109 97 78
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Factors Replication
A B CDEVFGH 1 2 3 4 5 6 7 8 9 10
12 1 2 2 1 2 1 107 146 88 117 88 110 139 INF 91 78
1 2 1 2 2 1 2 2 107 146 88 117 88 110 139 126 91 78
1 2 1 2 2 2 1 1 374 491 368 412 380 410 454 344 343 332
1 2 1 2 2 2 1 2 376 491 368 412 380 410 467 353 343 332
i 2 1 2 2 2 2 1 380 494 368 412 380 410 463 INF 325 332
1 2 1 2 2 2 2 2 385 494 368 412 380 410 488 398 325 332
1 2 2 1 1 1 1 1 690 709 711 723 800 794 647 736 702 732
12 2 1 1 1 1 2 690 709 711 723 821 803 647 736 702 732
1 2 2 1 1 1 2 1 711 733 745 712 1099 790 662 773 747 735
1 2 2 1 1 1 2 2 711 733 745 712 981 790 662 773 747 735
1 2 2 1 1 2 1 1 2199 2389 2198 2299 2333 2192 2217 2380 2274 2413
12 2 1 1 2 1 2 2171 2418 2283 2226 2476 2242 2193 2372 2163 2042
1 2 2 1 1 2 2 1 2245 2580 2439 2239 2712 2147 2152 2433 2697 2241
1 2 2 1 1 2 2 2 2245 2537 2439 2340 2741 2444 2208 2433 2697 2240
1 2 2 1 2 1 1 1 INF INF INF INF INF INF INF INF INF INF
12 2 1 2 1 1 2 INF INF INF INF INF INF INF INF INF INF
1 2 2 1 2 1 2 1 INF INF INF INF INF INF INF INF INF INF
1 2 2 1 2 1 2 2 INF INF INF INF INF INF INF INF INF INF
1 2 2 1 2 2 1 1 INF INF INF INF INF INF INF INF INF INF
12 2 1 2 2 1 2 INF INF INF INF INF INF INF INF INF INF
12 2 1 2 2 2 1 INF INF INF INF INF INF INF INF INF INF
12 2 1 2 2 2 2 INF INF INF INF INF INF INF INF INF INF
I 2 2 2 1 1 1 1 435 477 432 440 416 455 458 424 446 420
P22 2 11 1 2 435 477 432 440 416 455 458 424 446 420
12 2 2 1 1 2 1 435 477 432 440 416 455 458 432 446 420
12 2 2 1 1 2 2 435 477 432 440 116 455 458 132 446 420
P22 02 1 2 1 1 1563 1811 1609 1633 1664 1634 1710 1608 1741 1622
12 2 2 1 2 1 2 1623 1829 1619 1662 1616 1645 1728 1616 1756 1634
12 2 2 1 2 2 1 1620 1804 1687 1709 1613 1753 1696 1668 1764 1680
2 2 2 1 2 2 2 1623 1804 1725 1680 1608 1753 1696 1673 1824 1680
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Table C.1 (Continued)

Factors Replication
A B C D E F G H I 2 3 4 5 6 7 8 9 10
1 2 2 2 2 1 1 1 INF INF INF INF INF INF INF INF INF INF
1 2 2 2 2 1 1 2 INF INF INF INF INF INF INF INF INF INF
1 2 2 2 2 1 2 1 INF INF INF INF INF INF INF INF INF INF
1 2 2 2 2 1 2 2 INF INF INF INF INF INF INF INF INF INF
1 2 2 2 2 2 1 1 INF INF INF INF INF INF INF INF INF INF
1 2 2 2 2 2 1 2 INF INF INF INF INF INF INF INF INF INF
1 2 2 2 2 2 2 1 INF INF INF INF INF INF INF INF INF INF
1 2 2 2 2 2 2 2 INF INF INF INF INF INF INF INF INF INF
2 1 1 1 1 1 1 1 220 226 196 210 INF 207 190 212 223 199
2 1 1 1 1 1 1 2 214 226 225 217 272 216 210 217 220 203
2 1 1 1 1t 1 2 1 227 242 INF 224 244 209 193 210 222 202
2 1 1t 1 1 1 2 2 237 242 240 224 244 234 203 230 222 202
2 1 1 1 1 2 1 1 491 INF INF INF INF INF INF INF INF INF
2 1 1 1t 1 2 1 2 539 602 482 487 557 588 480 582 549 523
2 1 1 1 1 2 2 1 524 INF INF 442 INF 488 INF 542 INF INF
2 1 1 1 1 2 2 2 584 681 616 623 674 677 598 608 647 683
2 1 1 1 2 1 1 1 INF INF INF INF INF INF INF INF INF INF
2 1 1 1 2 1 1 2 340 348 312 334 320 345 358 280 324 282
2 1 1 1 2 1 2 1 INF INF INF INF INF INF INF INF INF INF
2 1 1 1 2 1 2 2 500 396 435 488 503 527 475 566 339 467
2 1 1 1 2 2 1 1 INF INF INF INF INF INF INF INF INF INF
2 1 1 1 2 2 1 2 719 599 707 693 729 632 642 693 713 841
2 01 112 2 2 1 INF INF INF INF INF INF INF INF INF INF
2t 1 2 2 2 2 904 1121 1038 1220 976 968 884 916 936 987
2 1 1 2 1 1 1 1 145 137 108 110 122 133 123 139 150 122
21 1 2 t 1 1 2 145 146 116 110 122 133 123 130 150 138
2 1 12 1 1 2 1 160 146 108 110 137 143 130 1533 142 130
21 12 1 1 2 2 160 146 108 110 137 143 130 130 142 120
2 1 2 1 2 I 429 435 313 308 392 344 399 399 433 442
2 0 1 2 1 2 1 2 477 385 292 516 439 368 456 410 491 452
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Table C.1 (Continued)

Factors Replication

A B CDE F G H I 2 3 4 5 6 7 8 9 10

2 1 1 2 1 2 2 1 INF 444 342 376 374 368 INF 413 418 440
2 11 2 1t 2 2 2 495 446 342 542 415 443 393 430 519 503
2 1 1 2 2 1 1 1 117 160 INF INF INF INF INF INF 123 INF
2 1 1 2 2 1 1 2 160 170 117 177 143 138 229 186 164 INF
2 1 1 2 2 1 2 1 126 183 INF INF INF INF INF INF 156 INF
2 1 L2 2 1 2 2 126 206 139 230 157 148 322 285 172 INF
2 1 1 2 2 2 1 1 INF INF INF INF INF INF INF 533 INF INF
2 1 1 2 2 2 1 2 532 698 442 INF 463 494 437 481 336 485
2 1 1 2 2 2 2 1 INF INF INF INF INF INF INF INF INF INF
2 1 1 2 2 2 2 2 813 738 429 716 654 1045 686 560 461 717
2 1 2 1 1 1 1 1 911 907 915 902 928 918 925 969 970 927
21 2 1 1 1 1 2 913 900 922 920 911 920 930 1006 935 897
2 1 2 1 1 1 2 1 1050 1115 INF 975 976 1054 1036 INF INF 1066
2 1 2 1 1 1 2 2 1050 1033 1037 1039 998 1036 1054 1128 1029 1053
2 12 1 1 2 1 1 INF INF INF INF 2177 INF 2283 INF 2349 INF
2 1 2 1 1 2 1 2 2194 2399 2592 2459 2342 2304 2460 2294 2472 2172
2 1 2 1 1 2 2 1 INF INF INF INF INF INF INF INF INF INF
2.1 2 1 1 2 2 2 2499 2663 2430 2753 2487 2559 2348 2556 2810 2762
2 1 2 1 2 1 1 1 INF INF INF INF INF INF INF INF INF INF
2 0 2 1 2 1 1 2 2033 1851 INF INF 1907 INF INF 1944 2026 INF
2 1 2 1 2 1 2 1 INF INF INF INF INF INF INF INF INF INF
2.1 2 1 2 1 2 2 INF INF INF INF 3777 INF INF INF INF INF
21 2 1 2 2 1 1 INF INF INF INF INF INF INF INF INF INF
2.1 2 1 2 2 1 2 3708 4079 3705 3855 3634 3660 3523 3886 4011 3809
2 10 21 2 2 2 1 INF INF INF INF INF INF INF INF INF INF
2 2 1 2 2 2 2 5339 6259 5755 5320 5760 5713 6151 6285 5816 6353
210 2 2 1 1 1 1 53535 604 573 527 376 581 617 5335 629 539
21 2 2 1 1 1 2 560 604 590 333 581 567 625 353 627 382
2 0 2 2 11 2 1 545 594 641 352 619 571 621 391 603 544
210 2 2 1 1 2 2 550 615 640 563 622 572 618 393 603 563
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Table C.1 (Continued)

Factors Replication
A B CDEF G H 1 2 3 4 5 6 7 8 9 10
21 2 2 1 2 1 1 1697 1779 1931 1670 1966 1953 1894 1691 1952 1814
2 1 2 2 1 2 1 2 1677 2081 1871 1761 1859 1868 1920 1762 2012 1676
21 2 2 1 2 2 1 1779 1889 1846 1851 1964 INF 2060 1879 1981 1723
2 1 2 2 1 2 2 2 1772 1962 1881 1841 2066 2195 2074 1926 2062 1830
21 2 2 2 1 1 1 INF INF INF INF INF INF INF INF INF INF
21 2 2 2 1 1 2 INF INF 921 1198 INF INF INF INF INF INF
21 2 2 2 1 2 1 INF INF INF INF INF INF INF INF INF INF
2.1 2 2 2 1 2 2 2283 INF INF 2025 INF INF INF 2922 INF 2572
21 2 2 2 2 1 1 INF INF INF INF INF INF INF INF INF INF
2.1 2 2 2 2 1 2 2999 2863 3128 3066 2818 3286 2821 2771 2774 2901
2 1 2 2 2 2 2 1 INF INF INF INF INF INF INF INF INF INF
2 1 2 2 2 2 2 2 5427 3266 3971 4146 4439 5821 4214 INF 5548 4135
2 2 1 1 1 1 1 1 169 172 170 149 160 177 157 167 166 166
2 2 1 1 1 1t 1 2 169 172 170 149 160 177 157 167 166 166
22 1 1 1 1 2 1 177 170 168 161 160 177 157 167 178 165
22 1 1 1 1 2 2 177 170 168 101 160 177 157 167 178 165
22t 1 1 2 1 1 507 446 481 502 454 366 426 451 454 433
22 1 1 1 2 1 2 479 446 433 501 458 387 404 437 454 431
22 1 1 1 2 2 1 436 477 480 516 442 468 487 451 509 471
22 1 1 1 2 2 2 436 477 480 516 442 468 507 4353 509 471
2.2 1 1 2 1 1 1 INF INF INF INF INF INF INF INF INF INF
2.2 1 1 2 1 1 2 INF INF INF INF INF INF INF INF INF INF
22 1 1 2 1 2 1 INF INF INF INF INF INF INF INF INF INF
22 b1 2 1 2 2 INF INF INF INF INF INF INF INF INF INF
22 1 1 2 2 1 1 INF INF INF INF INF INF INF 590 INF INF
22 1 2 2 1 2 618 639 612 702 576 618 603 649 559 596
2 02 1 1 2 2 2 1 INF 672 INF INF INF INF 629 INF 753 INF
22 1 1 2 2 2 2 INF 725 797 INF 808 INF 629 08 749 841
22 0 2 001t i 99 97 90 86 111 106 94 97 114 101
22 1 2 1 1 1 2 99 97 90 86 111 106 94 94 114 95
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Table C.1 (Continued)

Factors Replication

A B CDE F G H 1 2 3 4 5 6 7 8 9 10

2 2 2 2 1t 1 1 1 431 474 426 432 413 442 439 425 454 413

2.2 2 2 1 1 1 2 431 474 426 432 413 442 439 425 454 413

2 2 2 2 1 1 2 1 431 474 434 432 413 442 439 425 454 413

2 2 2 2 1 1 2 2 431 474 434 432 413 442 439 425 454 413

2 2 2 2 1 2 1 1 1565 1789 1426 1536 1543 1560 1701 1525 1621 1596
2 2 2 2 1 2 1 2 1442 1789 1441 1527 1548 1582 1669 1505 1630 1564
2 2 2 2 1 2 2 1 1557 1816 1466 1539 1539 1620 1658 1556 1648 1577
2 2 2 2 1 2 2 2 1498 1788 1451 1566 1566 1620 1694 1530 1648 1549
2 2 2 2 2 1 1 1 INF INF INF INF INF INF INF INF INF INF
2 2 2 2 2 1 1 2 INF INF INF INF INF INF INF INF INF INF
2 2 2 2 2 1 2 | INF INF INF INF INF INF INF INF INF INF
2 2 2 2 2 1 2 2 INF INF INF INF INF INF INF INF INF INF
2 02 2 2 2 2 1 | INF INF INF INF INF INF INF INF INF INF
2 2 2 2 2 2 1 2 INF INF INF INF INF INF INF INF INF INF
22 2 2 2 2 2 1 INF INF INF INF INF INF INF INF INF INF
2 2 2 2 2 2 2 2 INF INF INF INF INF INF INF INF INF INF
31 1 1 1 1 1 1 164 144 176 161 198 156 167 172 194 171

31 1 1 1 1 1 2 174 154 197 174 208 170 192 181 203 196
31 1 1 1 1 2 1 192 168 182 183 186 175 182 197 188 184
31 1 1 1 1 2 2 239 264 256 223 234 229 225 257 226 238
31 1 1 1 2 1 1 417 418 403 375 386 379 387 357 475 383
301 1 11 2 1 2 422 406 458 439 444 455 382 398 480 458
301 1 1 1 2 2 1 432 495 544 365 410 466 427 435 515 386
31t 1 1 2 2 2 558 776 709 660 578 637 084 594 655 574
301 1 1 2 1 1 1 230 207 217 233 198 213 230 INF 200 203
53011 1 2 1 1 2 248 271 235 310 249 255 251 306 209 229
301 11 o2 1 2 1 261 287 274 277 223 297 269 287 246 235
012 1 2 2 605 544 521 468 412 420 549 448 443 412
01112 2 1 393 INF INF INF INF INF INF INF INF INF
i1 1 12 2 12 709 630 514 694 567 557 494 549 542 548
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APPENDIX D

RESULTS OF TUKEY TESTS FOR SIGNIFICANCE
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c=1; d=1; e=1; f=1; g=1; h=1.

Alpha=0.05 df=89 MSE=1.278904
Critical Value of Studentized Range= 4.590
Minimum Significant Difference= 1.6504
WARNING: Cell sizes are not equal.
Harmonic Mean of cell sizes= 9.89011
Means with the same letter are not significantly different.

Tukey Grouping Mean

7.2610
7.2610
6.9480
4.1770
3.4940
3.4078
2.9620
2.8430
2.8080
1.0000

AT W EWWW > > >

c=1; d=1; e=1; f=1; g=1; h=2.

Sample Size
10
10
10
10
10
9
10
10
10
10

Alpha=0.05 df= 90 MSE= 1400902
Critical Valuc of Studentized Range= 4.388
Minimum Significant Difference= 1.7173
Means with the same letter are not significantly different.

Tukey Grouping

OowwwHdd >

c=1; d=1; e=1; f=1; g=2; h=1.

Mean

7.2610
7.2610
6.9480
4.1770
3.8770
3.4180
3.2020
2.8430
2.7950
1.0000

Sample Size
10
10
10
10
10
10
10
10
10
10

Alpha=0.05 df=89 MSE=2.11628
Critical Value of Studentized Range= 4.590
Minimum Significant Difference= 2.1231
WARNING: Cell sizes are not equal.
Harmonic Mean of cell sizes= 9.89011

Tukey Grouping
A
A
B
C
C
C
C

D C

D C
D

Mean

9.7040
9.7040
7.4720
4.8480
3.9078
3.5310
3.2260
2.9440
2.8370
1.0000

Sample Size
10
10
10
10
9
10
10
10
10
10

Solution Approach
9
10
.

oL

AN B W) —

Solution Approach
9

LN =
<

o 4= th — W

o

Solution Approach
9
10
7

oL

no— W2

(2N S NN
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c=1; d=1; e=1; f=1; g=2; h=2.

Alpha= 0.05 df= 90 MSE=2.134932
Critical Value of Studentized Range= 4.588
Minimum Significant Difference= 2.1201
Means with the same letter are not significantly different.

Tukey Grouping Mean

9.7040
9.7040
7.4720
4.8480
4.2100
4.0270
3.4030
2.9440
2.8370
1.0000

(wllw)
o000 wy >

c=1; d=1; e=1; =2; g=1; h=1.

Sampie Size
10
10
10
10
10
10
10
10
10
10

Alpha=0.05 df=81 MSE=0.08294
Critical Value of Studentized Range= 4.507
Minimum Significant Difference= 0.4105
Means with the same letter are not significantly different.

Tukey Grouping Mecan

2.4670
2.1380
2.1040
1.9690
1.8910
1.8910
1.8210
1.6080
1.0000

WWwww W w
o000 >>

c=1; d=1; e=1; =2; g=1; h=2,

Alpha=0.05 df=90 MSE=

Sample Size
10
10
10
10
10
10
10
10
10

0.087763

Critical Valuc of Studentized Range= 4.588
Minimum Significant Difference= 0.4298
Means with the same letter are not significantly different.

Tukey Grouping Mean

2.3770
2.0850
2.0270
2.0000
1.9480
1.8230
1.8230
1.7160
1.6870
1.0000

wWwww

NWoWw >

Sample Size
10
10
10
10
10
10
10
10
10
{0

Solution Approach
9
0

N ] =

AN = L

Solution Approach
7
2
8
1
10

9

4

SN W

Solution Approuach

[ SV |

— -

‘h

6
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c=1; d=1; e=1; =2; g=2; h=1.
Alpha=0.05 df=81 MSE=0.095523
Critical Value of Studentized Range= 4.507
Minimum Significant Difference= 0.4405
Means with the same letter are not significantly different.

Tukey Grouping Mean Sample Size Solution Approach
A 2.6790 10 7
B A 2.3450 10 10
B A 2.3450 10 9
B C 2.1530 10 8
B C 2.0600 10 2
B C 1.9740 10 1
C 1.8490 10 4
C 1.7460 10 3
D 1.0000 10 6

c=1; d=1; e=1; {=2; g=2; h=2,
Alpha=0.05 df=90 MSE=0.114818
Critical Value of Studentized Range= 4.588
Minimum Significant Difference= 0.4917
Means with the same letter are not significantly different.

Tukey Grouping Mean Sample Size Solution Approach
A 2.6270 10 7
B A 2.4450 10 h
B A 2.4370 10 3
B A C 2.2990 10 10
B A C 2.2990 10 9
B C 2.1130 10 S
B C 2.0370 10 1
B C 2.0190 10 2
C 1.8240 10 4
D 1.0000 10 6

c=1; d=1; e=2; f=1; g=1; h=1.
Alpha= 0.05 df= 53 MSE=2.258074
Critical Value of Studentized Range= 4.181
Minimum Significant Difference= 2.0052
WARNING: Cecll sizes are not equal.
Harmonic Mean of cell sizes=9.818182
Means with the same letter are not significantly differcnt.

Tukey Grouping Mean  Sample Size Solution Approach
A 9.0880 10 9
A 9.0880 10 10
A 7.1420 10 8
B 4.9840 10 7
C 2.7356 9 5
C 1.0000 10 6
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c=1; d=1; e=2; f=1; g=1,; h=2.
Alpha= 0.05 df=63 MSE=2.016383
Critical Value of Studentized Range= 4.307
Minimum Significant Difference= 1.9341
Means with the same letter are not significantly different. :

Tukey Grouping Mean Sample Size Solution Approacl
A 9.0880 10 10
A 9.0880 10 9
B 7.1240 10 8
C 4.9840 10 7
C 4.1210 10 3
C 3.2340 10 5
D 1.0000 10 6

c=1; d=1; e=2; {=1; g=2; h=1.
Alpha= 0.05 df=54 MSE= 6.008689
Critical Value of Studentized Range= 4,178
Minimum Significant Difference= 3.2388
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Size Solution Approach
A 13.623 10 9
A 13.623 10 10
A 12,594 10 8
B 5.428 10 7
C B 2.968 10 5
C 1.000 10 6

c=1; d=1; e=2; =1, g=2; h=2.
Alpha=0.05 df=63 MSE= 5493531
Critical Value of Studentized Range= 4.307
Minimum Significant Difference= 3.1924
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Size Solution Approach
A 13.623 10 10
A 13.623 10 9
A 12.594 10 8
B 5.428 10 7
B 5.293 10 3
B 5.253 10 3
C 1.000 10 6

c=1; d=1; e=2; f=2; g=1; h=1.
Alpha= 0.05 df=44 MSE=0.129235
Critical Value of Studentized Range= 4.022
Minimum Significant Difference= 0.4623
WARNING: Cell sizes are not equal.
Harmonic Mean of cell sizes= 9.782609
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Size Solution Approach
A 2.2330 10 10
A 2.2330 10 Y
B A 2.0210 10 7
B 1.6670 10 8
C 1.0000 9 6
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c=1; d=1; e=2; {=2; g=1; h=2.
Alpha=0.05 df=72 MSE= 0.093456
Critical Valuc of Studentized Range= 4.413
Minimum Significant Difference= 0.4268
Means with the same letter are not significantly diffcrent.

Tukey Grouping Mean  Sample Size Solution Approach
A 2.3520 10 9
A 2.3520 10 10
B A 2.1650 10 3
B A 2.1390 10 7
B A 1.9290 10 4
B 1.8030 10 5
B 1.7610 10 8
C 1.0000 10 6

c=1; d=1; e=2; f=2; g=2; h=].
Alpha=0.05 df=45 MSE=0.096517
Critical Value of Studentized Range= 4.018
Minimum Significant Difference= 0.3948
Means with the same letter are not significantly different.

Tukey Grouping Mean Sample Size Solution Approach
A 3.4540 10 10
A 3.4540 10 9
B 2.4460 10 7
B 2.2220 10 8
C 1.0000 10 6

c=1; d=1; e=2; {=2; g=2; h=2.
Alpha= 0.05 df=69 MSE= 0.080494
Critical Value of Studentized Range= 4.421
Minimum Significant Difference= 0.4071
WARNING: Cell sizes are not equal.
Harmonic Mean of cell sizes= 9.491525
Means with the same letter are not significantly differcnt.

Tukey Grouping Mean Sample Size Solution Approach
A 3.0690 10 9
A 3.0690 10 10
B 2.4190 10 3
C B 2.1760 10 7
C B 2.0860 10 3
C 1.9680 10 8
C 1.9271 7 4
D 1.0000 10 6
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c=1; d=2; e=1; =1; g=I; h=1.
Alpha=0.05 df=90 MSE=3.688227
Critical Value of Studentized Range= 4.588
Minimum Significant Difference= 2.7863
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Size Solution Approach
A 10.6290 10 7
A 10.1890 10 10
A 10.1890 10 9
A 8.1850 10 S
B 2.8740 10 3
B 2.7850 10 1
B 2.2130 10 4
B 2.1690 10 2
B 2.1380 10 5
B 1.0000 10 6

c=1; d=2; e=1; f=1,; g=1; h=2.
Alpha=0.05 df=90 MSE=4.113345
Critical Value of Studentized Range= 4.588
Minimum Significant Difference= 2.9427
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Size Solution Approach
A 11.2870 10 7
A 10.8270 10 10
A 10.8270 10 9
A 8.7560 10 8
B 3.1280 10 3
B 2.8230 10 ]
B 2.3260 10 4
B 2.3020 10 2
B 2.1670 10 5
B 1.0000 10 6

c=1; d=2; e=1; f=1; g=2; h=1.
Alpha=0.05 df=90 MSE=6.275634
Critical Value of Studentized Range= 4.588
Minimum Significant Difference= 3.6348
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Size Solution Approach
A - 13.783 10 Y
A 13.783 10 10
A 12.070 10 7
A 11.613 10 8
B 2.976 10 3
B 2.545 10 ]
B 2.435 10 5
B 2.219 10 4
B 2.162 10 2
B 1.000 10 6
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c=1; d=2; e=1; f=I; g=2; h=2,
Alpha=0.05 df=90 MSE=7.390149
Critical Value of Studentized Range= 4.588
Minimum Significant Difference= 3.9444
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Size Solution Approach
A 14.662 10 Y
A 14.662 10 10
A 12.848 10 7
A 12.433 10 8
B 3.119 10 3
B 2.700 10 1
B 2.583 10 3
B 2.332 10 4
B 2.295 10 2
B 1.000 10 6

c=1; d=2; e=1; [=2; g=I; h=1.
Alpha= 0.05 df=90 MSE= 0.562097
Critical Value of Studentized Range= 4.388
Minimum Significant Difference= 1.0878
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Size Solution Approach
A 3.6790 10 7
A 3.1350 10 8
B A 2.6250 10 9
B A 2.6250 10 10
B C 1.9900 10 3
B C 1.9460 10 2
B C 1.8850 10 4
B C 1.8770 10 1
C 1.4100 10 5
C 1.0300 10 6

c=1; d=2; e=1; £=2; g=1; h=1.
Alpha= 0.05 df=90 MSE=0.844415
Critical Value of Studentized Range= 4.588

Minimum Significant Difference= 1.3333
Means with the same letier are not significantly different.

Tukey Grouping Mean  Samplc Size Solution Approach
A 3.6680 10 7
B A 3.1200 16 S
B A C 2.6250 10 9
B A C 2.6250 10 10
B D C 2.1740 10 3
B D C 1.9610 10 2
B D C 1.9550 10 1
B D C 1.8650 10 4
D C 1.6440 10 5
D 1.0000 10 6
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c=1; d=2; e=1; f=2; g=2; h=1.

Alpha= 0.05 df=88 MSE=0.807384

Critical Value of Studentized Range= 4.591

Minimum Significant Difference= 1.3207

WARNING: Cell sizes are not equal.

Harmonic Mean of cell sizes= 9.756098
Means with the same letter are not significantly diffcrent.

Tukey Grouping Mean  Sample Size
A 4.1700 10
A 3.5390 10
A 3.4580 10
A 3.4580 10
B 1.9537 8
B 1.9040 10
B 1.8710 10
B 1.8710 10
B 1.7100 10
B 1.0000 10

c=1; d=2; e=1; £=2; g=2; h=2.

Alpha= 0.05 df=90 MSE= 0.646059

Critical Value of Studentized Range= 4.588

Minimum Significant Difference= 1.1662
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Size
A 4.3230 10
A 3.6790 10
A 3.5780 10
A 3.5780 10
B 2.3580 10
B 2.2020 10
C B 1.9850 10
C B 1.9470 10
C B 1.9410 10
C 1.0000 10

¢=1; d=2; e=2; £=1; g=1; h=1.

Alpha= 0.05 df=77 MSE=4.184745

Critical Value of Studentized Range=4.514

Minimum Significant Difference= 2.9956

WARNING: Cell sizes are not equal.

Harmonic Mean of cell sizes= 9.501466
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Size
A 13.5370 10
A 13.5370 10
B A 11.9770 10
B 9.4100 10
C 2.1956 9
C 1.9980 10
C 1.8650 8
C 1.8322 9
C 1.0000 10

Solution Approach

Solution Approach
7
8
9
10

-~

b h e

F

6

Solution Approach
10
)

~1 oL

O\ = e
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c=1; d=2; e=2; =1; g=1; h=2.

Alpha=0.05 df= 89 MSE=3.954504
Critical Value of Studentized Range= 4.590
Minimum Significant Difference= 2.9022
WARNING: Cell sizes are not equal.
Harmonic Mean of cell sizes= 9.89011
Means with the same letter are not significantly different.

Tukey Grouping Mean
13.8130
13.8130
12.2160
9.5720
3.3900
3.1722
2.1000
2.0430
2.0350
1.0000

oo w>» »r e

c=1; d=2; e=2; {=1; g=2; h=1.

Sample Size
10
1
10
10
10
9
10
10
10
10

Alpha= 0.05 df=76 MSE= 11.81509
Critical Value of Studentized Range= 4.315
Minimum Significant Difference= 5.0721
WARNING: Cell sizes are not cqual.
Harmonic Mean of cell sizes= 9.364162
Means with the same letter are not significantly different.

Tukey Grouping Mean
23.240
22.484
22.484
13.461
2,456
2.045
2.004
1.854
1.000

OO0O0O0O0Ow P > >

c=1; d=2; e=2; f=1; g=2; h=2,

Sample Size

10
10
10
10
8

10
8

9

10

Alpha=0.05 df= 89 MSE=9.685818
Critical Value of Studentized Range= 4.590
Minimum Significant Difference= 4.542
WARNING: Cell sizes are not equal.
Harmonic Mcan of cell sizes= 9.89011

Tukey Grouping Mean
24.183
23.405
23.405
13.908
4.338
3.897
2.228
2.149
2.097
1.000

OO0OO000COwE > >

Sample Size
10
10
10
10
10
9
10
10
10
10

Solution

Solution

Solution

Approach
Y
10

oL

ON 1N e = L U~

Approach
8

9

10

.

N0 — = '

Approach
h
9

~ -
o

o 4= = L)

ol
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c=1; d=2; e=2; £=2; g=1; h=1.

Alpha=0.05 df=64 MSE=0.544886
Critical Value of Studentized Range= 4.540
Minimum Significant Difference= 1.5571
WARNING: Cell sizes are not equal.
Harmonic Mean of cell sizes= 4.632353
Means with the same letter are not significantly different.

Tukey Grouping Mean
A 3.1890
A 3.1890
B A 3.0290
B A 2.9070
B C 1.6229
B C 1.5800
B C 1.5400
C 1.3420
C 1.0000

c=1; d=2; e=2; {=2; g=1; h=2.

Sample Size

10
10
10
10
-

10
1

5
10

Alpha=0.05 df=89 MSE=0.461552
Critical Valuc of Studentized Range= +4.390
Minimum Significant Difference= 0.9913
WARNING: Cell sizes are not equal.
Harmonic Mean of cell sizes= 9.89011
Means with the same letter are not significantly different.

Tukey Grouping Mean

3.1000
3.1000
2.9470
2.8150
1.8000
1.7070
1.6660
1.6220
1.5550
1.0000

svvvilve R wviitevilve e e N b 4

c=1; d=2; e=2; f=2; g=2; h=1.

Sample Size
10
10
10
10
9
10
10
10
10
10

Alpha=0.05 df= 66 MSE=1.234238
Critical Value of Studentized Range= 4.333
Minimum Significant Difference= 1.8377
WARNING: Cell sizes are not equal.
Harmonic Mean of cell sizes= 7.517401
Means with the samc letter are not significantly different.

Tukey Grouping Mean

4.9290
4.9290
4.1180
40210
1.4787
1.4467
1.4060
1.3725
1.0000

Wwwww> > > >

Sample Size
10
10
10
10
8

o

O & W

Solution Approach
10
Y

[N}

o —

(o S/

Solution Approach
9
10
7

oo

e — w2

o W

Solution Approach
10
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c=1; d=2; e=2; (=2; g=2; h=2.

Alpha=0.05 df=90 MSE=1.213862

Critical Value of Studentized Range= 4.588

Minimum Significant Difference= 1.5986
Means with the same letter are not significantly different,

Tukey Grouping Mean Sample Size
A 4.6280 10
A 4.6280 10
B A 3.8940 10
B A 3.7830 10
B C 2.4140 10
C 2.1690 10
C 1.5500 10
C 1.4610 10
C 1.3950 10
C 1.0180 10

c=2; d=1; e=1; =1, g=1; h=1.

Alpha=0.05 df=90 MSE=0.099806

Critical Value of Studentized Range= 4.588

Minimum Significant Difference= 0.4384
Means with the same letter arc not significantly different.

Tukey Grouping Mean  Sample Size
A 10.8840 10
A 10.8840 10
B 7.6160 10
C 6.5240 10
D 2.5150 10
E D 2.3820 10
E D 2.3220 10
E F 1.9620 10
F 1.7810 10
G 1.0000 10

c=2; d=1; e=l; [=1; g=1; h=2.
Alpha=0.05 df=90 MSE=0.124711

Critical Value of Studentized Range= 4.388

Minimum Significant Difference=0.5124
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Size
A 10.9400 10
A 10,9400 10
B 7.6530 10
C 6.5510 10
D 2.8550 10

E D 2.5220 10

E F 2.2800 10
F 1.9810 10
F 1.7920 10
G 1.0000 10

Solution Approach
9
10
8

L) ~)

NN —

Solution Approach
9
10
.

e

e N = W

jon}

Solution Approach
9
10
.

s}

N = o — s
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c=2; d=1; e=1; f=1; g=2; h=1.
Alpha=0.05 df=87 MSE=0.528572
Critical Value of Studentized Range= 4.592
Minimum Significant Difference= 1.0782
WARNING: Cell sizes are not equal.
Harmonic Mean of cell sizes= 9.589041
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Size Solution Approach
A 14,9810 10 9
A 14,9810 10 10
A 14.5760 10 8
B 7.9440 10 7
C 2.8586 7 3
C 2.8370 10 5
C 2.4410 10 1
C 2.1020 10 2

D Cc 1.8020 10 4
D 1.0000 10 6

¢=2; d=1; e=1; f=1; g=2; h=2.
Alpha=0.05 df=90 MSE=0.584392
Critical Value of Studentized Range= 4.588
Minimum Significant Difference= 1.1092
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Size Solution Approach
A 15.0680 10 9
A 15.0680 10 10
A 14.6640 10 S
B 7.9890 10 7
C 3.7210 10 3
D C 2.8770 10 3
D 2.3440 10 1
D E 2.0830 10 2
D E 1.8140 10 4
E 1.0000 10 6

c=2; d=1; e=1; £=2; g=1; h=1.
Alpha= 0.05 df= 83 MSE= 0.049005
Critical Value of Studentized Range= 4.598
Minimum Significant Difference= 0.3575
WARNING: Cell sizes are not equal.
Harmonic Mean of cell sizes= 8.108108
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Size Solution Approach
A 2.9850 10 7
A 2.8880 10 10
A 2.8880 10 Y
B 1.7890 10 8
C B 1.5970 10 2
C B 1.5500 3 3
C B 1.4750 10 1
C 1.3760 10 5
C D 1.3190 10 4
D 1.0000 10 6
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c=2; d=1; e=1; £=2; g=1,; h=2.
Alpha=0.05 df=90 MSE=0.048486
Critical Value of Studentized Range= 4.588
Minimum Significant Difference= 0.3193
Means with the same letter are not significantly different.

Tukey Grouping Mean Sample Size Solution Approach
A 2.99700 10 7
A 2.90100 10 10
A 2.90100 10 9
B 1.79800 10 8
C B 1.66100 10 3
C B D 1.58000 10 2
C B D 1.56700 10 l
C D 1.44700 10 5
E D 1.31600 10 4
E 1.00000 10 6

c=2; d=1; e=1; =2; g=2; h=1.
Alpha=0.05 df= 81 MSE=0.051454
Critical Value of Studentized Range= 4.507
Minimum Significant Difference= 0.3233
Means with the same letter are not significantly diffcrent.

Tukey Grouping Mean Sample Size Solution Approach
A 4.0440 10 10
A 4.0440 10 9
B 3.2540 10 7
C 1.9510 10 8
D C 1.7200 10 2
D C 1.6680 10 1
D 1.5930 10 5
D 1.4580 10 4
E 1.0000 10 6

c=2; d=1; e=1; £=2; g=2; h=2.
Alpha=0.05 df=90 MSE=0.052913
Critical Value of Studentized Range= 4.588
Minimum Significant Difference= 0.3338
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Size Solution Approach
A 4.0350 10 9
A 4.0350 10 10
B 3.2490 10 7
C 1.9480 10 8
C 1.8930 10 5
C 1.8610 10 3

D C 1.7470 10 2

D C 1.6290 10 1
D 1.4550 10 4
E 1.0000 10 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N



3]
(3]
(@)

c¢=2; d=1; e=2; f=1; g=1; h=1.
Alpha=0.05 df=45 MSE=0.55786
Critical Value of Studentized Range= 4.018
Minimum Significant Difference= 0.9491
Means with the same letter are not significantly different.

Tukey Grouping Mean Sample Size Solution Approach
A 13.1560 10 10
A 13.1560 10 9
B 6.8230 10 8
Cc 3.3870 10 7
D 1.0000 10 6

=2; d=1; e=2; f=1; g=1; h=2.
Alpha= 0.05 df=358 MSE= 0.470839
Critical Value of Studentized Range=4.319
Minimum Significant Difference= 1.0019
WARNING: Cell sizes are not equal.
Harmonic Mean of cell sizes= 8.75
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Sizc Solution Approach
A 13.0970 10 10
A 13.0970 10 9
B 6.7930 10 8
C 4.0480 5 3
C 3.3690 10 7
C 3.3510 10 3
D 1.0000 10 6

c=2; d=1; e=2; £=1; g=2; h=1.
Alpha=0.05 df=45 MSE=2.380181
Critical Value of Studentized Range=4.018
Minimum Significant Difference= 1.9603
Means with the same letter are not significantly different.

Tukey Grouping Mean Sample Size Solution Approach
A 21.0740 10 10
A 21.0740 10 9
B 15.3450 10 8
C 4.9370 10 7
D 1.0000 10 6

¢=2; d=1; e=2; f=1; g=2; h=2.
Alpha= 0.05 df=54 MSE=2.202189
Critical Value of Studentized Range=4.178
Minimum Significant Difference= 1.9608
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Size Solution Approach
A 21.0740 10 9
A 21.0740 10 10
B 15.3450 10 8
C 5.3650 10 3
C 4.9370 10 7
D 1.0000 10 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(884
2
~

c¢=2; d=1,; e=2; £=2; g=1; h=1.
Alpha= 0.05 df=45 MSE=0.017622
Critical Valuc of Studentized Range=4.018
Minimum Significant Difference= 0.1687
Means with the same letter are not significantly different.

Tukey Grouping Mean Sample Size Solution Approach
A 3.75300 10 10
A 3.75300 10 9
B 1.68200 10 7
C 1.08800 10 8
C 1.01500 10 6

¢=2; d=1; e=2; =2; g=1; h=2.
Alpha=0.05 df=63 MSE=0.012254
Critical Value of Studentized Range= 4.307
Minimum Significant Difference= 0.1508
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Size Solution Approach
A 3.72300 10 10
A 3.72300 10 9
B 2.12600 10 3
C 1.73100 10 5
C 1.66800 10 7
D 1.08100 10 8
D 1.01300 10 6

Alpha= 0.05 df=45 MSE=0.093108
Critical Value of Studentized Range= 4.018
Minimum Significant Difference= 0.3877
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Size Solution Approach
A 5.9040 10 10
A 5.9040 10 9
B 1.9810 10 7
C 1.4340 10 8
D 1.0040 10 6

¢=2; d=1; e=2; £=2; g=2; h=2.
Alpha=0.05 df=63 MSE=0.08188
Critical Value of Studentized Range= 4.307
Minimum Significant Difference= 0.3897
Means with the same letter are not significantly different.

Tukey Grouping Mean Sample Size Solution Approach
A 5.8880 10 10
A 5.8880 10 9
B 3.0500 10 3
B 2.7310 10 5
C 1.9750 10 7
D 1.4420 10 8
E 1.0000 10 O
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c=2; d=2; e=1; f=1; g=1; h=1.
Alpha=0.05 df=90 MSE=0.314511

Critical Value of Studentized Range= +4.588

Minimum Significant Difference= 0.8137

Means with the same letier are not significantly different.
Solution Approach

Tukey Grouping Mean Sample Size
A 13.2710 10
A 13.2710 10
B 9.9320 10
B 9.3430 10
C 1.9430 10
C 1.8550 10
D C 1.6450 10
D C 1.4180 10
D C 1.4020 1o
D 1.0000 10

c=2; d=2; e=1; f=1; g=1; h=2.

Alpha=0.05 df=90 MSE=0.319858

Critical Value of Studentized Range= 4.588

Minimum Significant Difference= 0.8206

Means with the same letter are not significantly different.
Solution Approach

Tukey Grouping Mean Sample Size
A 13.2710 10
A 13.2710 10
B 9.9320 10
B 9.3320 10
C 2.0590 10
C 1.8790 10
D C 1.6040 10
D C 1.4180 10
D C 1.4020 10
D 1.0000 10

c=2; d=2; e=1; f=1; g=2; h=1.

Alpha=0.05 df=90 MSE=1.181922

Critical Value of Studentized Range= 4.588

Minimum Significant Difference= 1.5774

Mecans with the same letter arc not signilicantly different.

Tukey Grouping Mean  Sample Size
A 19.8430 10
A 18.3230 10
A 18.3230 10
B 11.2220 10
C 2.2910 10
C 1.8940 10
Cc 1.6400 10
C 1.4200 10
C 1.4040 10
C 1.0000 10

9
10

[eBEN |

e N = LI Wy

>

9
10
7

o

SN o — W

Approach
8
9

~ o=

d= DN = L) n

fo)
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c=2; d=2; e=1; f=1; g=2; h=2.

Alpha=0.05 df=90 MSE=1.197751
Critical Value of Studentized Range= 4,588
Minimum Significant Difference= 1.588
Means with the same letter are not significantly different.

Tukey Grouping Mean
19.8430
18.3230
18.3230
11.2220
2.6660
1.9110
1.6030
1.4200
1.4040
1.0000

(vlvRwiw)
gooooowy» > >

c=2; d=2,; e=1; {=2; g=1; h=1].

Alpha= 0.05 df=90 MSE=

Sample Size
10
10
10
10
10
10
10
10
10
10

0.065386

Critical Value of Studentized Range= 4.588
Minimum Significant Difference= 0.3716
Means with the same letter are not significantly different.

Tukey Grouping Mean

3.7230
3.4990
3.4990
2.5330
1.5080
1.4110
1.3680
1.3580
1.3080
1.0000

oo
Tgooo0nw» > >

c=2; d=2; e=1,; £=2; g=1; h=2.

Sample Size
10
10
10
10
10
10
10
10
10
10

Alpha=0.05 df=90 MSE=0.062049
Critical Value of Studentized Range= 4.588
Minimum Significant Difference= 0.3614
Means with the same letter are not significantly different.

Tukey Grouping Mean
3.7380

_— N LI LI W2
~ s
(93]
<
<

goocoOoaw>» »
BN
[«
W
o

Sample Size
[0
10
10
10
10
10
10
10
10
10

Solution

Solution

Solution

Approach

Approach
7

10

9

[SS IRV RRPS o]

o A —

Approach
7
10

L

R — L)

O\ = W
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c=2; d=2; e=1; £=2; g=2; h=1.
Alpha=0.05 df=89 MSE=0.073258
Critical Value of Studentized Range= 4.590
Minimum Significant Difference= 0.395
WARNING: Cell sizes are not equal.
Harmonic Mcan of cell sizcs= 9.89011
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Size Solution Approach
A 47710 10 9
A 47710 10 10
B 4.0350 10 7
C 2.9670 10 8
D 1.5556 9 3
D 1.4930 10 5
D 1.4680 10 1

E D 1.3930 10 2

E D 1.3110 10 4
E 1.0000 10 6

c=2; d=2; e=1; 1=2; g=2; h=2.
Alpha=0.05 df=90 MSE=0.062163
Critical Value of Studentized Range= 4.588
Minimum Significant Difference= 0.3618
Means with the same letter are not significantly different.

Tukey Grouping Mean Sample Size Solution Approach
A 4.7990 10 9
A 4.7990 10 10
B 4.0570 10 7
C 2.9840 10 8
D 1.6720 16 5
D 1.6190 10 3
D 1.4680 10 1
D 1.4080 10 2

E D 1.3140 10 4
E 1.0000 10 6

c=2; d=2; e=2; f=1; g=1; h=1.
Alpha=0.05 df=44 MSE=23.43193
Critical Value of Studentized Range= 4.022
Minimum Significant Difference= 6.225
WARNING: Ccll sizes are not cqual.
Harmonic Mean of cell sizes= 9.782609
Means with the same letter are not significantly different.

Tukey Grouping Mean Sample Size Solution Approach
A 18.537 10 10
A 18.537 10 9
A 14.926 10 8
B 7.936 10 7
C 1.000 9 6
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¢=2; d=2; e=2; {=1; g=1; h=2.
Alpha=0.05 df= 54 MSE=4.875797
Critical Value of Studentized Range=4.178
Minimum Significant Difference= 2.9176
Means with the same letter are not significantly different.

Tukey Grouping Mean Sample Size Solution Approach
A 19.9600 10 9
A 19.9600 10 10
B 16.0920 10 8
C 8.6230 10 7
D 3.9230 10 5
E 1.0000 10 6

¢=2; d=2; e=2; [=1; g=2; h=1.
Alpha= 0.05 df=45 MSE=17.01174
Critical Value of Studentized Range= 4.018
Minimum Significant Difference= 5.2412
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Sizc Solution Approach
A 37.231 10 8
A 33.454 10 9
A 33.434 10 10
B 13.631 10 7
C 1.000 10 6

c=2; d=2; e=2; f=1; g=2; h=2.
Alpha= 0.05 df= 354 MSE=20.09254
Critical Value of Studentized Range=4.178
Minimum Significant Difference= 5.9226
Means with the same letter are not significantly diffcrent.

Tukey Grouping Mean  Sample Size Solution Approach
A 37.088 10 8
A 33.301 10 9
A 33.301 10 10
B 13.547 10 7
C 5.880 10 5
C 1.000 10 6

c=2; d=2; e=2; £=2; g=1; h=1.
Alpha= 0.05 df=41 MSE= 1.055287
Critical Value of Studentized Range= 4.035
Minimum Significant Difference= 1.3953
WARNING: Cell sizes are not cqual.
Harmonic Mean of cell sizes= §.823529
Means with the same letter are not significantly different.

Tukey Grouping Mean  Sample Size Solution Approach
A 3.7220 10 10
A 3.7220 10 9
B 2.1780 10 7
B 1.8590 10 8
B 1.0000 6 6
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c=2; d=2; e=2; =2; g=1; h=2,
Alpha=0.05 df=63 MSE= 0.086889
Critical Value of Studentized Range= 4.307
Minimum Significant Difference= 0.4013
Means with the same letter are not significantly different.

Tukey Grouping Mean Sample Size Solution Approach
A 5.0080 10 10
A 5.0080 10 9
B 2.8960 10 7
C 2.4410 10 8
C 2.2420 10 3
C 2.0530 10 5
D 1.0000 10 6

c=2; d=2; e=2; =2; g=2; h=1.
Alpha= 0.05 df=42 MSE=4.570735
Critical Value of Studentized Range= 4.030
Minimum Significant Difference= 2.8391
WARNING: Cell sizes are not cqual.
Harmonic Mcan of cell sizes= 9.210526
Means with the same letter are not significantly diffcrent.

Tukey Grouping Mean  Sample Sizc Solution Approach
A 6.5120 10 10
A 6.5120 10 Y
B 3.3180 10 8
B 2.9500 10 7
B 1.0000 7 6

c=2; d=2; e=2; f=2; g=2; h=2,
Alpha=0.05 df=62 MSE=0.519292
Critical Value of Studentized Range= 4.309
Minimum Significant Differcnce= 0.9898
WARNING: Cell sizes arc not cqual.
Harmonic Mean of cell sizes= 9.84375
Means with the same letter are not significantly different.

Tukey Grouping Mean Sample Size Solution Approach
A 8.0390 10 10
A 8.0390 10 9
B 4.0310 10 8
B 3.5690 10 7
B 3.3011 9 3
B 3.2260 10 5
C 1.0000 10 6
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